
nPYc Toolbox Documentation
Release 1.2.6

National Phenome Centre

Aug 10, 2021

Contents

1 Introduction 3
1.1 Introduction to Metabolic Profiling . 3
1.2 Tutorials . 3
1.3 Recommended Study Design Elements . 3
1.4 Datasets . 4
1.5 Sample Metadata . 4
1.6 Sample and Feature Masks . 4
1.7 Reports . 4
1.8 Batch & Run-Order Correction . 4
1.9 Multivariate Analysis . 4
1.10 Normalisation . 5
1.11 Exporting Data . 5
1.12 Configuration Files . 5
1.13 Enumerations . 5
1.14 Utility Functions . 5
1.15 Plotting Functions . 5

2 Metabolic Profiling 7

3 Installation and Tutorials 9
3.1 Installing the nPYc-Toolbox . 9
3.2 Installing the nPYc-toolbox-tutorials . 10
3.3 Using the Jupyter Notebooks . 10
3.4 Tutorial Datasets . 11
3.5 Preprocessing and Quality Control of LC-MS Data with the nPYc-Toolbox 11
3.6 Preprocessing and Quality Control of NMR Data with the nPYc-Toolbox 13
3.7 Preprocessing and Quality Control of NMR Targeted Data with the nPYc-Toolbox 13

4 Recommended Study Design Elements 15
4.1 Sample and Study Design Nomenclature . 15

5 Datasets 17
5.1 LC-MS Datasets . 18
5.2 NMR Datasets . 19
5.3 Targeted Datasets . 19
5.4 Dataset Specific Syntax and Parameters . 20

i

6 Sample Metadata 45
6.1 CSV Template for Metadata Import . 45
6.2 Analytical Parameter Extraction . 47

7 Sample and Feature Masks 49
7.1 Using updateMasks . 50
7.2 Using excludeSamples and excludeFeatures . 52
7.3 Using applyMasks and initialiseMasks . 52

8 Quality Assessment Reports 53
8.1 Sample Summary Report . 54
8.2 Feature Summary Report: LC-MS Datasets . 54
8.3 Feature Summary Report: NMR Datasets . 57
8.4 Feature Summary Report: NMR Targeted Datasets . 58
8.5 Dataset Specific Reporting Syntax and Parameters . 60

9 Batch & Run-Order Correction 63
9.1 Batch & Run-Order Correction Assessment . 64
9.2 Running Batch & Run-Order Correction . 64

10 Multivariate Analysis 67
10.1 PCA Model . 67
10.2 Multivariate Analysis Report . 68
10.3 Interactive Plots . 72

11 Normalisation 73
11.1 Normalisation Syntax and Parameters . 73

12 Exporting Data 77

13 Configuration Files 79
13.1 Built-in Configuration SOPs . 79
13.2 Generation of Targeted SOPs . 81

14 Enumerations 87

15 Utility Functions 91

16 Plotting Functions 93

17 Plot Gallery 107

18 Glossary 113

Python Module Index 117

Index 119

ii

nPYc Toolbox Documentation, Release 1.2.6

The nPYc-Toolbox defines objects for representing, and implements functions to manipulate and display, metabolic
profiling datasets.

Contents:

Contents 1

https://github.com/phenomecentre/nPYc-Toolbox

nPYc Toolbox Documentation, Release 1.2.6

2 Contents

CHAPTER 1

Introduction

The nPYc-Toolbox is a general Python 3 implementation of the MRC-NIHR National Phenome Centre toolchain for
the import, quality-control, and preprocessing of metabolic profiling datasets.

The toolbox is built around creating an object for each imported dataset. This object contains the metabolic profiling
data itself, alongside all associated sample and feature metadata; various methods for generating, reporting and plot-
ting important quality control parameters; and methods for pre-processing such as filtering poor quality features or
correcting trends in batch and run-order.

The following sections describe these, in approximate order of application, in more detail. However, we strongly
recommend downloading and working through the tutorials and referring to the documentation when required.

1.1 Introduction to Metabolic Profiling

This section provides a brief introduction to metabolic profiling, the analytical background of the technologies used,
and the motivation for the implementation of the nPYc-Toolbox.

See Metabolic Profiling for details.

1.2 Tutorials

This section provides detailed examples of using the nPYc-Toolbox to import, perform quality-control, and preprocess
various types of metabolic profiling datasets.

See Installation and Tutorials for details.

1.3 Recommended Study Design Elements

This section provides an introduction to recommended sample types and analytical study design elements to ensure
standardised quality control (QC) procedures and generate high quality datasets.

3

nPYc Toolbox Documentation, Release 1.2.6

See Recommended Study Design Elements for details.

1.4 Datasets

The nPYc-Toolbox is built around a core Dataset object, which contains the metabolic profiling data itself, alongside
all associated sample and feature metadata; various methods for generating, reporting and plotting important quality
control parameters; and methods for pre-processing such as filtering poor quality features or correcting trends in batch
and run-order. This section gives details of importing data into a Dataset, and gives details of supported data types.

See Datasets for details.

1.5 Sample Metadata

Additional study design parameters or sample metadata may be mapped into the Dataset, this section describes the
nomenclature and formats for adding data in order to maximise the utility of the toolbox for quality control.

See Sample Metadata for details.

1.6 Sample and Feature Masks

Each Dataset object contains a sample and feature masks that store whether a sample or feature, respectively, should
be used when calculating QC metrics, in the visualisations in the report functions and when exporting the dataset. This
section gives details of the masks, the key functions that modify them and how these are can be used.

See Sample and Feature Masks for details.

1.7 Reports

The nPYc-Toolbox offers a series of reports, pre-set visualisations comprised of text, figures and tables to describe and
summarise the characteristics of the dataset, and help the user assess the overall impact of quality control decisions.

See Quality Assessment Reports for details.

1.8 Batch & Run-Order Correction

This section describes the tools available to detect, assess and correct longitudinal run-order trends and batch effects
in LC-MS datasets.

See Batch & Run-Order Correction for details.

1.9 Multivariate Analysis

The nPYc-Toolbox provides the capacity to generate a PCA model of the data, and subsequently, to use this to assess
data quality, identify potential sample and feature outliers, and determine any potential analytical associations with the
main sources of variance in the data.

See Multivariate Analysis for details.

4 Chapter 1. Introduction

nPYc Toolbox Documentation, Release 1.2.6

1.10 Normalisation

This section describes the process for normalising data to correct for dilution effects on global sample intensity.

See Normalisation for details.

1.11 Exporting Data

This section describes how to export your data (measurements, and feature and sample related metadata).

See Exporting Data for details.

1.12 Configuration Files

Behaviour of many aspects of the toolbox can be modified in a repeatable manner by creating configuration files,
this section describes the default configuration files and their parameters across the different methods, and gives
information on how to create your own configuration SOPs.

See Configuration Files for details.

1.13 Enumerations

The nPYc-Toolbox uses a set of enumerations (complete listings of all possible items in a collection) for common
types referenced in profiling experiments.

See Enumerations for details.

1.14 Utility Functions

This section contains information on the nPYc-Toolbox utility functions, useful functions for working with profiling
datasets.

See Utility Functions for details.

1.15 Plotting Functions

The Plotting Functions sections describes the common plots available, both interactive and static version of many
plots exist, suitable for use in an interactive setting such as a Jupyter notebook, or saving figures for later use.

See the Plot Gallery for a visual overview.

1.10. Normalisation 5

nPYc Toolbox Documentation, Release 1.2.6

6 Chapter 1. Introduction

CHAPTER 2

Metabolic Profiling

Metabolic profiling offers a powerful window into the dynamic interaction between an organism’s genetic makeup
and environmental influences, by assaying the metabolic content of biofluids (Nicholson et al1). By measuring levels
of the products of metabolism, metabolic profiling can capture a real-time picture of an organism’s metabolic state,
including both genetic factors and non-genetic factors such as environmental, nutritional, and behavioural influences
(Holmes et al2).

The two most common analytic technologies for metabolic profiling are Nuclear Magnetic Resonance (NMR) spec-
troscopy (Dona et al3), typically directed at the proton spectrum, and hyphenated-mass spectrometry (MS), combining
a chromatographic separation with mass-spectrometric detection (Lewis et al4).

NMR spectroscopy provides a highly precise, non-destructive analytical technique, but is hampered by a comparatively
low sensitivity. Applied to biofluids for the purpose of profiling, NMR typically yields data as a one-dimensional
spectrum, which may be analysed in an untargeted profiling fashion, or further processed to extract lists of quantified
compounds from the spectrum and thus treat the data in a targeted manner (Hao et al5, Ravanbakhsh et al6).

Mass spectrometry offers a highly sensitive tool for measuring compounds in biofluids, but is limited by the need
to resolve compounds according to molecular weight, as many compounds commonly observed in biofluids share

1 Jeremy K Nicholson, John Connelly, John C Lindon and Elaine Holmes. Metabonomics: a platform for studying drug toxicity and gene
function. Nature Reviews Drug Discovery, 1(2):153-61, 2002. URL: http://dx.doi.org/10.1038/nrd728

2 Elaine Holmes, Ruey Leng Loo, Jeremiah Stamler, Magda Bictash, Ivan KS Yap, Queenie Chan, Timothy MD Ebbels, Maria De Iorio, Ian J
Brown, Kirill A Veselkov, Martha L Daviglus, Hugo Kesteloot, Hirotsugu Ueshima, Liancheng Zhao, Jeremy K Nicholson and Paul Elliott. Human
metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453(7193):396-400, 2008. URL: http://dx.doi.org/10.1038/
nature06882

3 Anthony C Dona, Beatriz Jiménez, Hartmut Schäfer, Eberhard Humpfer, Manfred Spraul, Matthew R Lewis, Jake TM Pearce, Elaine Holmes,
John C Lindon and Jeremy K Nicholson. Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-
Scale Metabolic Phenotyping. Analytical Chemistry, 86(19):9887-9894, 2014. URL: http://dx.doi.org/10.1021/ac5025039

4 Matthew R Lewis, Jake TM Pearce, Konstantina Spagou, Martin Green, Anthony C Dona, Ada HY Yuen, Mark David, David J Berry,
Katie Chappell, Verena Horneffer-van der Sluis, Rachel Shaw, Simon Lovestone, Paul Elliott, John Shockcor, John C Lindon, Olivier Cloarec,
Zoltan Takats, Elaine Holmes and Jeremy K Nicholson. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS
for Precision Large Scale Urinary Metabolic Phenotyping. Analytical Chemistry, 88(18):9004-9013, 2016. URL: http://dx.doi.org/10.1021/acs.
analchem.6b01481

5 Jie Hao, Manuel Liebeke, William Astle, Maria De Iorio, Jacob G Bundy and Timothy MD Ebbels. Bayesian deconvolution and quantification
of metabolites in complex 1D NMR spectra using BATMAN. Nature Protocols, 9(6):1416–1427, 2014. URL: http://dx.doi.org/10.1038/nprot.2014.
090

6 Siamak Ravanbakhsh, Philip Liu, Trent C Bjorndahl, Rupasri Mandal, Jason R Grant, Michael Wilson, Roman Eisner, Igor Sinelnikov, Xiaoyu
Hu, Claudio Luchinat, Russell Greiner and David S Wishart. Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics. PLOS ONE,
10(5):1-15, 2015. URL: https://doi.org/10.1371/journal.pone.0124219

7

http://dx.doi.org/10.1038/nrd728
http://dx.doi.org/10.1038/nature06882
http://dx.doi.org/10.1038/nature06882
http://dx.doi.org/10.1021/ac5025039
http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1038/nprot.2014.090
http://dx.doi.org/10.1038/nprot.2014.090
https://doi.org/10.1371/journal.pone.0124219

nPYc Toolbox Documentation, Release 1.2.6

the same chemical formula. This is typically accounted for by coupling MS detection with chromatography (for
example, liquid chromatography, LC-MS) in order to further separate molecules by their chromatographic affinity.
Such hyphenated methods result in a two dimensional dataset for each sample analysed (mass to charge ratio, m/z vs.
chromatographic affinity, typically as retention time.

Owing to the complexity and volume of LC-MS data, usually a preliminary feature detection step is applied, that
reduces the two dimensional raw analytical data to a 1D list of detected features, each of which is characterised by
abundance and observed m/z and retention time. This process may be conducted in both a targeted manner, where the
peaks to be integrated are defined in advance, or in an untargeted profiling approach, in which all peak-like features
detectable in the data are integrated. There are a wide range of peak-detection algorithms (Spicer et al7), but all are
susceptible to spuriously detecting analytical noise as features, and thus require a stage of de-noising to produce a high
final quality dataset.

Both analytical platforms mentioned above are subject to analytical biases and variances in the precision and accuracy
of measurements, and this must be accounted for by the inclusion of quality control (QC) measures, in the form of
stand alone QC samples, and reference compounds that may be doped into the samples. A well calibrated NMR
instrument is expected to have excellent precision, and study specific QC measures are typically limited to the doping
of a chemical shift reference and the repeated analysis of a reference sample. Owing to the complex interactions
between sample and instrument, however, LC-MS assays, typically show lower measurement precision than NMR,
and often exhibit longitudinal signal drifts over the course of an analysis which must be corrected in order to obtain
an accurate representation of true levels in each sample.

As alluded to above, regardless of the analytical platforms used to generate measurements, metabolic profiling assays
can be broadly separated into two classes: targeted and untargeted profiling analysis. In targeted analyses, the list of
compounds to be detected is often defined up-front and the measurements frequently given as absolute quantifications.
The data pre-processing strategy is also targeted, as it focuses on the extraction and integration of an expected set
of signals. Conversely, in an profiling analysis, the set of compounds measured is expanded to capture as many
compounds as possible. Although this approach in theory provides a more complete window into metabolism, the
chemical identity of the great majority of detected compounds in the assay will be unknown and, owing to challenges
in feature detection, for some features, the measurement precision might be inferior compared to that in a targeted
assay.

Targeted and profiling assay each carry their own implied trade-offs in terms of measurement precision, metabolite
annotation and quality control strategy. Protocols for the conduct of targeted analyses are well-established (see section
ref{targeted}). Quality control in profiling studies has typically been conducted on an ad-hoc basis for individual stud-
ies, although in recent years there is an increasing push towards the systematisation and automation of pre-processing
toolkits (Giacomoni et al8, Rijswijk et al9). The nPYc-Toolbox, presented here, is intended to provide a platform
for quality control of metabolic profiling datasets, embodying the quality control practices championed by the MRC-
NIHR National Phenome Centre, and focusing on the interpretability of the output to both the analysts who generate
the data, and the final users who will perform statistical analysis.

7 Rachel Spicer, Reza M Salek, Pablo Moreno, Daniel Cañueto and Christoph Steinbeck. Navigating freely-available software tools for
metabolomics analysis. Metabolomics, 13(9):106, 2017. URL: https://doi.org/10.1007/s11306-017-1242-7

8 Franck Giacomoni, Gildas Le Corguillé, Misharl Monsoor, Marion Landi, Pierre Pericard, Mélanie Pétéra, Christophe Duperier, Marie
Tremblay-Franco, Jean-François Martin, Daniel Jacob, Sophie Goulitquer, Etienne A Thévenot and Christophe Caron. Workflow4Metabolomics:
a collaborative research infrastructure for computational metabolomics. Bioinformatics, 31(9):1493–1495, 2015. URL: https://doi.org/10.1093/
bioinformatics/btu813

9 Merlijn van Rijswijk, Charlie Beirnaert, Christophe Caron, Marta Cascante, Victoria Dominguez, Warwick B Dunn, Timothy MD Ebbels,
Franck Giacomoni, Alejandra Gonzalez-Beltran, Thomas Hankemeier, Kenneth Haug, Jose L Izquierdo-Garcia, Rafael C Jimenez, Fabien Jour-
dan, Namrata Kale, Maria I Klapa, Oliver Kohlbacher, Kairi Koort, Kim Kultima, Gildas Le Corguillé, Pablo Moreno, Nicholas K Moschonas,
Steffen Neumann, Claire O’Donovan, Martin Reczko, Philippe Rocca-Serra, Antonio Rosato, Reza M Salek, Susanna-Assunta Sansone, Venkata
Satagopam, Daniel Schober, Ruth Shimmo, Rachel A Spicer, Ola Spjuth, Etienne A Thévenot, Mark R Viant, Ralf JM Weber, Egon L Willigha-
gen, Gianluigi Zanetti and Christoph Steinbeck. The future of metabolomics in ELIXIR [version 2; peer review: 3 approved. F1000Research,
6(ELIXIR):1649, 2017. URL: https://doi.org/10.12688/f1000research.12342.2

8 Chapter 2. Metabolic Profiling

https://doi.org/10.1007/s11306-017-1242-7
https://doi.org/10.1093/bioinformatics/btu813
https://doi.org/10.1093/bioinformatics/btu813
https://doi.org/10.12688/f1000research.12342.2

CHAPTER 3

Installation and Tutorials

3.1 Installing the nPYc-Toolbox

We recommend running the nPYc-Toolbox pipeline using Jupyter notebooks, this can either be done through the
data science platform Anaconda (recommended), or alternatively through installing Python and the Jupyter notebooks
independently.

Using Anaconda - recommended

• Install Anaconda with Python 3.6 or above from Anaconda Download Link

• Install the nPYc-Toolbox by opening the Anaconda Prompt (see Getting started with Anaconda for details) and
typing ‘pip install nPYc’, this will install the toolbox alongside any required dependencies and make it available
as a general python package

• Note, if you have an older version of Anaconda, it should first be updated by using the Anaconda Prompt and
typing ‘conda update conda’ and ‘conda update –all’ (it may be necessary to run the prompt as administrator
by selecting this option on the right click menu as you open it). For very old versions, it may be necessary to
uninstall and reinstall the latest version

Using Python and Jupyter

• Install Python 3.6 or above from Python Download Link

• Install the nPYc-Toolbox by opening a command (Windows) or terminal (macOS) window and typing ‘pip
install nPYc’, this will install the toolbox alongside any required dependencies and make it available as a general
python package

• Install Juypter from Jupyter Download Link

For advanced users, the toolbox source code can be downloaded directly from the nPYc-Toolbox GitHub Repository

We strongly recommend additionally downloading the nPYc-toolbox-tutorials, which give detailed worked examples
of using the nPYc-Toolbox.

9

https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://www.python.org/downloads/
https://jupyter.readthedocs.io/en/latest/install.html
https://github.com/phenomecentre/nPYc-Toolbox

nPYc Toolbox Documentation, Release 1.2.6

3.2 Installing the nPYc-toolbox-tutorials

We strongly recommend downloading the nPYc-toolbox-tutorials, which use Jupyter notebooks to demonstrate the
application of the nPYc-Toolbox for the preprocessing and quality control of exemplar LC-MS, NMR and targeted
NMR (Bruker IVDr) metabolic profiling datasets. These tutorials work through each step in detail, with links to
relevant documentation.

• Download the nPYc-toolbox-tutorials from nPYc-toolbox-tutorials GitHub repository

• Click on the green ‘Clone or download’ dropdown menu, then the tutorials can be downloaded as a ZIP file and
saved in a suitable location

3.3 Using the Jupyter Notebooks

Opening a Jupyter Notebook

Jupyter can be opened from the Anaconda navigator (recommended) or from the command line.

• Using the Anaconda Navigator, launch a Jupyter Notebook session by clicking on the ‘Jupyter Notebook’ icon

• Alternatively, from the command (Windows) or terminal (macOS) window, launch Jupyter by typing ‘jupyter
notebook’, for more details see Running Jupyter

• Either of the options above will result in an instance of the Jupyter Notebooks opening in a browser window

Running the nPYc-toolbox-tutorials

• Open a Jupyter Notebook session (as described above)

• Click on the ‘File’ tab and navigate to the location where the nPYc-toolbox-tutorials are saved

• Jupyter notebooks save with the file extension ‘ipynb’

• Click on the required Jupyter notebook example (MS, NMR and targeted NMR examples available, as described
below) to open in a new browser window

• To run the notebook, click through the cells using the ‘Run’ button

• Notebooks can be reset and restarted using ‘Kernal > Restart & Clear Output’

• Notebooks can be saved using ‘File > Save and Checkpoint’ (notebooks can then be shared, and others will be
able to view their contents)

• Full details on using the Jupyter Notebooks can be found here Jupyter Read the Docs

Running your own notebook

• Open the required the nPYc-toolbox-tutorials (as described above)

• Select ‘File > Make a copy..’ to make a copy of the notebook

• Select ‘File > Rename..’ to rename the copied notebook

• Replace the file paths in the document with your own data path files

• Run the notebook!

10 Chapter 3. Installation and Tutorials

https://github.com/phenomecentre/nPYc-toolbox-tutorials
https://jupyter.readthedocs.io/en/latest/running.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/examples_index.html

nPYc Toolbox Documentation, Release 1.2.6

3.4 Tutorial Datasets

Exemplar data, as part of the nPYc-toolbox-tutorials, can be downloaded from the nPYc-toolbox-tutorial GitHub
repository. This repository contains all the data and files required to run the tutorials (as described below). Data
(including all raw LC-MS data files) is also available from the Metabolights repository under accession number MT-
BLS694.

The dataset used in these tutorials (DevSet) is comprised of three distinct pooled samples of human urine, with three
additional samples generated by pairwise mixing of each primary sample, resulting in a sample set of six:

• DevSet1

• DevSet2

• DevSet3

• DevSet1v2

• DevSet1v3

• DevSet2v3

The samples were then split into 13 equivalent aliquots, and each independently prepared and measured by ultra-
performance liquid chromatography coupled to reversed-phase positive ionisation mode spectrometry (LC-MS, RPOS)
and 1H nuclear magnetic resonance (NMR) spectroscopy according to Phenome Centre protocols (LC-MS: Lewis et
al1, NMR: Dona et al2). As per these protocols, a pooled QC Study Reference sample and independent external
reference (Long-Term Reference) of a comparable matrix was also acquired to assist in assessing analytical precision.

Urine samples used for generating of the exemplar matrices were collected with informed written consent and ethical
approval from the Imperial College Healthcare Tissue Bank (12/WA/0196, project R13053).

3.5 Preprocessing and Quality Control of LC-MS Data with the nPYc-
Toolbox

This tutorial demonstrates how to use the LC-MS data processing modules of the nPYc-Toolbox, to import and perform
some basic preprocessing and quality control of LC-MS data, and to output a final high quality dataset ready for data
modeling.

Required files in nPYc-toolbox-tutorials:

• Preprocessing and Quality Control of LC-MS Data with the nPYc-Toolbox.ipynb: Jupyter notebook tutorial for
LC-MS RPOS (XCMS) data

• DEVSET U RPOS xcms.csv: feature extracted (XCMS) LC-MS RPOS data (see below)

• DEVSET U RPOS Basic CSV.csv: CSV file containing basic metadata about each of the acquired samples

Additional files (for example, the raw LC-MS data files) can be found in Metabolights MTBLS694

Feature extraction of the LC-MS dataset (generation of ‘DEVSET U RPOS xcms.csv’ from the raw data files) was
conducted with the R package XCMS , using the following script:

1 Matthew R Lewis, Jake TM Pearce, Konstantina Spagou, Martin Green, Anthony C Dona, Ada HY Yuen, Mark David, David J Berry,
Katie Chappell, Verena Horneffer-van der Sluis, Rachel Shaw, Simon Lovestone, Paul Elliott, John Shockcor, John C Lindon, Olivier Cloarec,
Zoltan Takats, Elaine Holmes and Jeremy K Nicholson. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS
for Precision Large Scale Urinary Metabolic Phenotyping. Analytical Chemistry, 88(18):9004-9013, 2016. URL: http://dx.doi.org/10.1021/acs.
analchem.6b01481

2 Jake TM Pearce, Toby J Athersuch, Timothy MD Ebbels, John C Lindon, Jeremy K Nicholson and Hector C Keun. Robust Algorithms
for Automated Chemical Shift Calibration of 1D 1H NMR Spectra of Blood Serum. Analytical Chemistry, 80(18):7158-62, 2008. URL: http:
//dx.doi.org/10.1021/ac8011494

3.4. Tutorial Datasets 11

https://github.com/phenomecentre/nPYc-toolbox-tutorials
https://github.com/phenomecentre/nPYc-toolbox-tutorials
https://www.ebi.ac.uk/metabolights
https://www.ebi.ac.uk/metabolights/MTBLS694
https://bioconductor.org/packages/release/bioc/html/xcms.html
http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/ac8011494
http://dx.doi.org/10.1021/ac8011494

nPYc Toolbox Documentation, Release 1.2.6

##
NPC Reverse-Phase Urine XCMS params
##

###
###---SAMPLESET-DEPENDENT VARIABLES---###
###

dataDirectory <- "/Volumes/Promise R6/Raw_Data/mzMLRPOS/"
savePath <- "/Volumes/Promise R6/Raw_Data/Example U RPOS XCMS.csv"

workers <- 8

setwd(dataDirectory)

###
###----------DATA EXTRACTION----------###
###

library(xcms)

centWave peak detection: suitable algorithm for high resolution LC/ToF data in
→˓centroid mode.
note the parameters below have been optimised for Xevo G2-S data originating from
→˓the NPC Urine RP analysis in POS mode

ds <- xcmsSet(method="centWave",
noise=600,
ppm=25,
prefilter=c(8, 6000),
snthresh = 10,
peakwidth=c(1.5,5),
mzdiff=0.01,
mzCenterFun="wMean",
integrate=2,
lock=F,
fitgauss=F,

BPPARAM=SnowParam (workers = workers), # number of core processors
)

Matches ("groups") peaks across samples (rtCheck = maximum amount of time from the
→˓median RT)

density method
gds<-group(ds, method="density",

minfrac=0,
minsamp=0,
bw=1,
mzwid=0.01,
sleep=0
)

identify peak groups and integrate samples
fds <- fillPeaks(gds, method="chrom", BPPARAM=SnowParam (workers = workers))

write.csv(peakTable(fds), file=savePath)

12 Chapter 3. Installation and Tutorials

nPYc Toolbox Documentation, Release 1.2.6

3.6 Preprocessing and Quality Control of NMR Data with the nPYc-
Toolbox

This tutorial demonstrates how to use the NMR data processing modules of the nPYc-Toolbox, to import and perform
some basic preprocessing and quality control of NMR data, and to output a final high quality dataset ready for data
modeling.

Required files in nPYc-toolbox-tutorials:

• Preprocessing and Quality Control of NMR Data with the nPYc-Toolbox.ipynb: Jupyter notebook tutorial for
NMR (Bruker) data

• DEVSET U 1D NMR raw data files: folder containing the 1D NMR raw data files (Bruker format)

• DEVSET U 1D NMR Basic CSV.csv: CSV file containing basic metadata about each of the acquired samples

3.7 Preprocessing and Quality Control of NMR Targeted Data with the
nPYc-Toolbox

This tutorial demonstrates how to use the NMR targeted data processing modules of the nPYc-Toolbox to import and
perform some basic quality control of outputs from the Bruker IVDr targeted quantification methods and generate a
final high quality dataset ready for data modeling.

Required files in nPYc-toolbox-tutorials:

• Preprocessing and Quality Control of Targeted NMR Data (Bruker IVDr) with the nPYc-toolbox.ipynb: Jupyter
notebook tutorial for targeted NMR (Bruker IVDr) data

• DEVSET U 1D NMR raw data files: folder containing the 1D NMR raw data files and the Bruker IVDr xml
quantification files

• DEVSET U 1D NMR IVDr Basic CSV.csv: CSV file containing basic metadata about each of the acquired
samples

3.6. Preprocessing and Quality Control of NMR Data with the nPYc-Toolbox 13

nPYc Toolbox Documentation, Release 1.2.6

14 Chapter 3. Installation and Tutorials

CHAPTER 4

Recommended Study Design Elements

For the purpose of standardising quality control (QC) procedures within the pipeline and generating high quality
datasets, the nPYc-Toolbox defines a recommended set of reference sample types and design elements, based on
quality control criteria previously described (Dona et al1, Lewis et al2).

One key element in this design is the use of a pooled QC sample, comprised of a mixture of aliquots taken from every
sample in the study. The nature of the pooled sample, as a physical average of all samples in the study, guarantees
that it will contain representative levels of the majority of compounds present in the samples, including previously
unobserved molecules, which is particularly important in profiling studies where the constituents of the sample matrix
are not known up-front.

This comprehensiveness allows the pooled QC to be useful in many ways, including, for example, in the generation of
measures of analytical precision, such as calculating Relative Standard Deviation, accuracy, for example, in calculating
Correlation to Dilution and to detect and potentially remove analytical batch and run-order effects (see Batch & Run-
Order Correction).

The following section describes recommended study design elements and key reference QC samples in more detail,
alongside how these samples are defined when using the nPYc-Toolbox.

4.1 Sample and Study Design Nomenclature

The nPYc toolbox uses the following nomenclature when defining sample types and analytical study design elements.
Certain terms are defined and controlled in the enumerations module.

Fig. 1: Generation of samples

1 Anthony C Dona, Beatriz Jiménez, Hartmut Schäfer, Eberhard Humpfer, Manfred Spraul, Matthew R Lewis, Jake TM Pearce, Elaine Holmes,
John C Lindon and Jeremy K Nicholson. Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-
Scale Metabolic Phenotyping. Analytical Chemistry, 86(19):9887-9894, 2014. URL: http://dx.doi.org/10.1021/ac5025039

2 Matthew R Lewis, Jake TM Pearce, Konstantina Spagou, Martin Green, Anthony C Dona, Ada HY Yuen, Mark David, David J Berry,
Katie Chappell, Verena Horneffer-van der Sluis, Rachel Shaw, Simon Lovestone, Paul Elliott, John Shockcor, John C Lindon, Olivier Cloarec,
Zoltan Takats, Elaine Holmes and Jeremy K Nicholson. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS
for Precision Large Scale Urinary Metabolic Phenotyping. Analytical Chemistry, 88(18):9004-9013, 2016. URL: http://dx.doi.org/10.1021/acs.
analchem.6b01481

15

http://dx.doi.org/10.1021/ac5025039
http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/acs.analchem.6b01481

nPYc Toolbox Documentation, Release 1.2.6

The hierarchy of sample generation, Study samples are generated from participants at one or more sampling events.
These sample are then assayed by one or more methods, generating a unique dataset for each sample assay.

In order to estimate analytical quality in a robust and extensible fashion, the nPYc-Toolbox characterises the samples
constituting a study by two parameters; the sample type, i.e., the source and composition of the sample, and the assay
role, the rational for a specific acquisition of data.

Sample Types are described in detail here SampleType, the most common are:

• ‘Study Sample’ comprise the study in question

• ‘Study Pool’ a mixture made from pooling aliquots from all/some study samples

• ‘External Reference’ a sample of a comparable matrix to the study samples, but not derived from samples
acquired as part of the study

Assay Roles are described in detail here AssayRole, the most common are:

• ‘Assay’ form the core of an analysis

• ‘Precision Reference’ acquired to characterise analytical variability

• ‘Linearity Reference’ samples used assess the linearity of response (or Correlation to Dilution) in the dataset

The main samples comprising the study are named Study Sample (SS), and are a Study Sample, Assay combination.

In addition, common combinations of Sample Type and Assay Role are defined within the nPYc-Toolbox and used to
characterise data quality, these include:

• Study Reference (SR): A Study Pool, Precision Reference combination used to assess analytical stability across
the acquisition run (such as Relative Standard Deviation)

• Long-Term Reference (LTR): An External Reference, Precision Reference combination used to assess analytical
stability across the acquisition run, and furthermore between different studies

• Serial Dilution Sample (SRD): A Study Pool, Linearity Reference combination used to assess linearity of re-
sponse, often by repeated injection at varying concentrations or levels of dilution (see Correlation to Dilution)

When using the nPYc-Toolbox, acquired samples can be matched to their experimental details (for example, reference
sample type or associated biological metadata) as described in the Sample Metadata section.

16 Chapter 4. Recommended Study Design Elements

CHAPTER 5

Datasets

The nPYc-Toolbox is built around creating an object for each imported dataset. This object contains the metabolic pro-
filing data itself, alongside all associated sample and feature metadata; various methods for generating, reporting and
plotting important quality control parameters; and methods for pre-processing such as filtering poor quality features
or correcting trends in batch and run-order.

The first step in creating an nPYc-Toolbox object is to import the acquired data, creating a Dataset specific for the
data type:

• MSDataset for LC-MS profiling data

• NMRDataset for NMR profiling data

• TargetedDataset for targeted datasets

For example, to import LC-MS data into a MSDataset object:

msData = nPYc.MSDataset('path to data')

Depending on the data type, the Dataset can be set up directly from the raw data, from common interchange formats,
or from the outputs of popular data-processing tools. The supported data types are described in more detail in the data
specific sections below.

When importing the data, default parameters, for example, specific parameters such as the number of points to inter-
polate NMR data into, or more generally the format to save figures as, are loaded from the Configuration Files. These
parameters are subsequently saved in the Attributes dictionary and used throughout subsequent implementation
of the pipeline.

For example, for NMR data, the nPYc-Toolbox contains two default configuration files, ‘GenericNMRUrine’ and
‘GenericNMRBlood’ for urine and blood datasets respectively, therefore, to import NMR spectra from urine samples
the sop parameter would be:

nmrData = nPYc.NMRDataset('path to data', sop='GenericNMRurine')

A full list of the parameters for each dataset type is given in the Built-in Configuration SOPs. If different values are
required, these can be modified directly in the appropriate SOP file, or alternatively they can be set by the user by
modifying the required ‘Attribute’, either at import, or by subsequent direct modification in the pipeline. For example,

17

nPYc Toolbox Documentation, Release 1.2.6

to set the line width threshold (LWFailThreshold) to subsequently flag NMR spectra with line widths not meeting this
value:

EITHER, set the required value (here 0.8) at import
nmrData = nPYc.NMRDataset(rawDataPath, pulseProgram='noesygppr1d', LWFailThreshold=0.
→˓8)

OR, set the *Attribute* directly (after importing nmrData)
nmrData.Attributes['LWFailThreshold'] = 0.8

Dataset objects have several key attributes, including:

• sampleMetadata: A 𝑛 × 𝑝 pandas dataframe of sample identifiers and sample associated metadata (each
row here corresponds to a row in the intensityData file)

• featureMetadata: A 𝑚 × 𝑞 pandas dataframe of feature identifiers and feature associated metadata (each
row here corresponds to a column in the intensityData file)

• intensityData: A 𝑛 × 𝑚 numpy matrix of measurements, where each row and column respectively corre-
spond to a the measured intensity of a specific sample feature

• sampleMask: A 𝑛 numpy boolean vector where True and False flag samples for inclusion or exclusion re-
spectively

• featureMask: A 𝑚 numpy boolean vector where True and False flag features for inclusion or exclusion
respectively

Fig. 1: Structure of the key attributes of a Dataset object. Of note, rows in the featureMetadata Dataframe
correspond to columns in the intensityData matrix.

Once created, you can query the number of features or samples it contains by running:

dataset.noFeatures
dataset.noSamples

Or directly inspect the sample or feature metadata, and the raw measurements:

dataset.sampleMetadata
dataset.featureMetadata
dataset.intensityData

For more details on using the sample and feature masks see Sample and Feature Masks.

It is possible to add additional study design parameters or sample metadata into the Dataset using the
addSampleInfo() method (see Sample Metadata for details).

For full method specific details see Installation and Tutorials.

5.1 LC-MS Datasets

The toolbox is designed to be agnostic to the source of peak-picked profiling datasets, currently supporting the outputs
of XCMS (Tautenhahn et al1), Bruker Metaboscape, and Progenesis QI, but simply expandable to data from other

1 Ralf Tautenhahn, Christoph Bottcher and Steffen Neumann. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformat-
ics, 9:504, 2008. URL: https://doi.org/10.1186/1471-2105-9-504

18 Chapter 5. Datasets

https://bioconductor.org/packages/release/bioc/html/xcms.html
https://www.bruker.com/products/mass-spectrometry-and-separations/ms-software/metaboscape/overview.html
http://www.nonlinear.com/progenesis/qi/
https://doi.org/10.1186/1471-2105-9-504

nPYc Toolbox Documentation, Release 1.2.6

peak-pickers. Current best-practices in quality control of profiling LC-MS (Want et al2, Dunn et al3, Lewis et al4) data
are applied, including utilising repeated injections of Study Reference samples in order to calculate analytical precision
for the measurement of each feature (Relative Standard Deviation), and a serial dilution of the reference sample to
asses the linearity of response (Correlation to Dilution), for full details see Feature Summary Report: LC-MS Datasets.

Study Reference samples are also used (in conjunction with Long-Term Reference samples if available) to assess and
correct trends in batch and run-order (Batch & Run-Order Correction). Additionally, both RSD and correlation to
dilution are used to filter features to retain only those measured with a high precision and accuracy (Sample and
Feature Masks).

5.2 NMR Datasets

The nPYc-Toolbox supports input of processed Bruker GmbH format 1D experiments. Upon import, each spectrum’s
chemical shift axis is calibrated to a reference peak (Pearce et al5), and all spectra interpolated onto a common scale,
with full parameters as per the NMRDataset Objects configuration SOPs. The toolbox supports automated calcu-
lation of the quality control metrics described previously (Dona et al6), including assessments of line-width, water
suppression quality, and baseline stability, for full details see Feature Summary Report: NMR Datasets.

5.3 Targeted Datasets

The TargetedDataset represents quantitative datasets where compounds are already identified, the exactitude of the
quantification can be established, units are known and calibration curve or internal standards are employed (Lee et al7).
It implements a set of reports and data consistency checks to assist analysts in assessing the presence of batch effects,
applying limits of quantification (LOQ), standardizing the linearity range over multiple batches, and determining and
visualising the accuracy and precision of each measurement, for more details see Feature Summary Report: NMR
Targeted Datasets.

The nPYc-Toolbox supports input of both MS-derived targeted datasets (tutorial and further documentation in
progress), and two Bruker proprietary human biofluid quantification platforms (IVDr algorithms) that generate tar-
geted outputs from the NMR profiling data, BI-LISA for quantification of Lipoproteins (blood samples only) and
BIQUANT-PS and BIQUANT-UR for small molecule metabolites (for blood and urine respectively).

2 Elizabeth J Want, Ian D Wilson, Helen Gika, Georgios Theodoridis, Robert S Plumb, John Shockcor, Elaine Holmes and Jeremy K Nicholson.
Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5(6):1005-18, 2010. URL: http://dx.doi.org/10.1038/nprot.
2010.50

3 Warwick B Dunn, David Broadhurst, Paul Begley, Eva Zelena, Sue Francis-McIntyre, Nadine Anderson, Marie Brown, Joshau D Knowles,
Antony Halsall, John N Haselden, Andrew W Nicholls, Ian D Wilson, Douglas B Kell, Royston Goodacre and The Human Serum Metabolome
(HUSERMET) Consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatog-
raphy coupled to mass spectrometry. Nature Protocols, 6(7):1060-83, 2011. URL: http://dx.doi.org/10.1038/nprot.2011.335

4 Matthew R Lewis, Jake TM Pearce, Konstantina Spagou, Martin Green, Anthony C Dona, Ada HY Yuen, Mark David, David J Berry,
Katie Chappell, Verena Horneffer-van der Sluis, Rachel Shaw, Simon Lovestone, Paul Elliott, John Shockcor, John C Lindon, Olivier Cloarec,
Zoltan Takats, Elaine Holmes and Jeremy K Nicholson. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS
for Precision Large Scale Urinary Metabolic Phenotyping. Analytical Chemistry, 88(18):9004-9013, 2016. URL: http://dx.doi.org/10.1021/acs.
analchem.6b01481

5 Jake TM Pearce, Toby J Athersuch, Timothy MD Ebbels, John C Lindon, Jeremy K Nicholson and Hector C Keun. Robust Algorithms
for Automated Chemical Shift Calibration of 1D 1H NMR Spectra of Blood Serum. Analytical Chemistry, 80(18):7158-62, 2008. URL: http:
//dx.doi.org/10.1021/ac8011494

6 Anthony C Dona, Beatriz Jiménez, Hartmut Schäfer, Eberhard Humpfer, Manfred Spraul, Matthew R Lewis, Jake TM Pearce, Elaine Holmes,
John C Lindon and Jeremy K Nicholson. Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-
Scale Metabolic Phenotyping. Analytical Chemistry, 86(19):9887-9894, 2014. URL: http://dx.doi.org/10.1021/ac5025039

7 Jean W Lee, Viswanath Devanarayan, Yu Chen Barrett, Russell Weiner, John Allinson, Scott Fountain, Stephen Keller, Ira Weinryb, Marie
Green, Larry Duan, James A Rogers, Robert Millham, Peter J O’Brien, Jeff Sailstad, Masood Khan, Chad Ray and John A Wagner. Fit-for-
purpose method development and validation for successful biomarker measurement. Pharmaceutical Research, 23(2):312-28, 2006. URL: http:
//dx.doi.org/10.1007/s11095-005-9045-3

5.2. NMR Datasets 19

https://www.bruker.com/products/mr/nmr-preclinical-screening/lipoprotein-subclass-analysis.html
https://www.bruker.com/products/mr/nmr-preclinical-screening/biquant-ps.html
https://www.bruker.com/products/mr/nmr-preclinical-screening/biquant-ur.html
http://dx.doi.org/10.1038/nprot.2010.50
http://dx.doi.org/10.1038/nprot.2010.50
http://dx.doi.org/10.1038/nprot.2011.335
http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/ac8011494
http://dx.doi.org/10.1021/ac8011494
http://dx.doi.org/10.1021/ac5025039
http://dx.doi.org/10.1007/s11095-005-9045-3
http://dx.doi.org/10.1007/s11095-005-9045-3

nPYc Toolbox Documentation, Release 1.2.6

5.4 Dataset Specific Syntax and Parameters

The main function parameters (which may be of interest to advanced users) are as follows:

Note, the Dataset object serves as a common parent to MSDataset, TargetedDataset, and NMRDataset, and
should not typically be instantiated independently.

class nPYc.objects.Dataset(sop=’Generic’, sopPath=None, **kwargs)
Base class for nPYc dataset objects.

Parameters

• sop (str) – Load configuration parameters from specified SOP JSON file

• sopPath – By default SOPs are loaded from the nPYc/StudyDesigns/SOP/ direc-
tory, if not None the directory specified in sopPath= will be searched before the builtin SOP
directory.

featureMetadata = None
𝑚 × 𝑞 pandas dataframe of feature identifiers and metadata

The featureMetadata table can include any datatype that can be placed in a pandas cell, However the
toolbox assumes certain prerequisites on the following columns in order to function:

Col-
umn

dtype Usage

Fea-
ture
Name

str
or
float

ID of the feature measured in this column. Each ‘Feature Name’ must be unique in
the table. If ‘Feature Name’ is numeric, the columns should be sorted in ascending or
descending order.

sampleMetadata = None
𝑛 × 𝑝 dataframe of sample identifiers and metadata.

The sampleMetadata table can include any datatype that can be placed in a pandas cell, However the
toolbox assumes certain prerequisites on the following columns in order to function:

20 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

Col-
umn

dtype Usage

Sample
ID

str ID of the sampling event generating this sample

Assay-
Role

AssayRoleDefines the role of this assay

Sam-
ple-
Type

SampleTypeDefines the type of sample acquired

Sample
File
Name

str Unique file name for the analytical data

Sample
Base
Name

str Common identifier that links analytical data to the Sample ID

Dilu-
tion

float Where AssayRole is LinearityReference, the expected abundance is indi-
cated here

Batch int Acquisition batch
Cor-
rection
Batch

int When detecting and correcting for batch and Run-Order effects, run-order effects
are characterised within samples sharing the same Correction Batch, while batch
effects are detected between distinct values

Ac-
quired
Time

date-
time.datetime

Date and time of acquisition of raw data

Run or-
der

int Order of sample acquisition

Exclu-
sion
Details

str Details of reasoning if marked for exclusion

Meta-
data
Avail-
able

bool Records which samples had metadata provided with the .addSampleInfo() method

featureMask = None
𝑚 element vector, with True representing features to be included in analysis, and False those to be
excluded

sampleMask = None
𝑝 element vector, with True representing samples to be included in analysis, and False those to be
excluded

AnalyticalPlatform = None
VariableType enum specifying the type of data represented.

Attributes = None
Dictionary of object configuration attributes, including those loaded from SOP files.

Defined attributes are as follows:

5.4. Dataset Specific Syntax and Parameters 21

nPYc Toolbox Documentation, Release 1.2.6

Key dtype Usage
‘dpi’ positive int Raster resolution when plotting figures
‘figureSize’ positive (float, float) Size to plot figures
‘figureFormat’ str Format to save figures in
‘histBins’ positive int Number of bins to use when drawing his-

tograms
‘Feature
Names’

Column in
featureMetadata

ID of the primary feature name

intensityData
𝑛 × 𝑚 numpy matrix of measurements

noSamples

Returns Number of samples in the dataset (n)

Return type int

noFeatures

Returns Number of features in the dataset (m)

Return type int

log
Return log entries as a string.

name
Returns or sets the name of the dataset. name must be a string

Normalisation
Normaliser object that transforms the measurements in intensityData.

validateObject(verbose=True, raiseError=False, raiseWarning=True)
Checks that all the attributes specified in the class definition are present and of the required class and/or
values. Checks for attributes existence and type. Check for mandatory columns existence, but does not
check the column values (type or uniqueness). If ‘sampleMetadataExcluded’, ‘intensityDataExcluded’,
‘featureMetadataExcluded’ or ‘excludedFlag’ exist, the existence and number of exclusions (based on
‘sampleMetadataExcluded’) is checked

Parameters

• verbose (bool) – if True the result of each check is printed (default True)

• raiseError (bool) – if True an error is raised when a check fails and the validation is
interrupted (default False)

• raiseWarning (bool) – if True a warning is raised when a check fails

Returns True if the Object conforms to basic Dataset

Return type bool

Raises

• TypeError – if the Object class is wrong

• AttributeError – if self.Attributes does not exist

• TypeError – if self.Attributes is not a dict

• AttributeError – if self.Attributes[‘Log’] does not exist

• TypeError – if self.Attributes[‘Log’] is not a list

22 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

• AttributeError – if self.Attributes[‘dpi’] does not exist

• TypeError – if self.Attributes[‘dpi’] is not an int

• AttributeError – if self.Attributes[‘figureSize’] does not exist

• TypeError – if self.Attributes[‘figureSize’] is not a list

• ValueError – if self.Attributes[‘figureSize’] is not of length 2

• TypeError – if self.Attributes[‘figureSize’][0] is not a int or float

• TypeError – if self.Attributes[‘figureSize’][1] is not a int or float

• AttributeError – if self.Attributes[‘figureFormat’] does not exist

• TypeError – if self.Attributes[‘figureFormat’] is not a str

• AttributeError – if self.Attributes[‘histBins’] does not exist

• TypeError – if self.Attributes[‘histBins’] is not an int

• AttributeError – if self.Attributes[‘noFiles’] does not exist

• TypeError – if self.Attributes[‘noFiles’] is not an int

• AttributeError – if self.Attributes[‘quantiles’] does not exist

• TypeError – if self.Attributes[‘quantiles’] is not a list

• ValueError – if self.Attributes[‘quantiles’] is not of length 2

• TypeError – if self.Attributes[‘quantiles’][0] is not a int or float

• TypeError – if self.Attributes[‘quantiles’][1] is not a int or float

• AttributeError – if self.Attributes[‘sampleMetadataNotExported’] does not exist

• TypeError – if self.Attributes[‘sampleMetadataNotExported’] is not a list

• AttributeError – if self.Attributes[‘featureMetadataNotExported’] does not exist

• TypeError – if self.Attributes[‘featureMetadataNotExported’] is not a list

• AttributeError – if self.Attributes[‘analyticalMeasurements’] does not exist

• TypeError – if self.Attributes[‘analyticalMeasurements’] is not a dict

• AttributeError – if self.Attributes[‘excludeFromPlotting’] does not exist

• TypeError – if self.Attributes[‘excludeFromPlotting’] is not a list

• AttributeError – if self.VariableType does not exist

• AttributeError – if self._Normalisation does not exist

• TypeError – if self._Normalisation is not the Normaliser ABC

• AttributeError – if self._name does not exist

• TypeError – if self._name is not a str

• AttributeError – if self._intensityData does not exist

• TypeError – if self._intensityData is not a numpy.ndarray

• AttributeError – if self.sampleMetadata does not exist

• TypeError – if self.sampleMetadata is not a pandas.DataFrame

• LookupError – if self.sampleMetadata does not have a Sample File Name column

5.4. Dataset Specific Syntax and Parameters 23

nPYc Toolbox Documentation, Release 1.2.6

• LookupError – if self.sampleMetadata does not have an AssayRole column

• LookupError – if self.sampleMetadata does not have a SampleType column

• LookupError – if self.sampleMetadata does not have a Dilution column

• LookupError – if self.sampleMetadata does not have a Batch column

• LookupError – if self.sampleMetadata does not have a Correction Batch column

• LookupError – if self.sampleMetadata does not have a Run Order column

• LookupError – if self.sampleMetadata does not have a Sample ID column

• LookupError – if self.sampleMetadata does not have a Sample Base Name column

• LookupError – if self.sampleMetadata does not have an Acquired Time column

• LookupError – if self.sampleMetadata does not have an Exclusion Details column

• AttributeError – if self.featureMetadata does not exist

• TypeError – if self.featureMetadata is not a pandas.DataFrame

• LookupError – if self.featureMetadata does not have a Feature Name column

• AttributeError – if self.sampleMask does not exist

• TypeError – if self.sampleMask is not a numpy.ndarray

• ValueError – if self.sampleMask are not bool

• AttributeError – if self.featureMask does not exist

• TypeError – if self.featureMask is not a numpy.ndarray

• ValueError – if self.featureMask are not bool

• AttributeError – if self.sampleMetadataExcluded does not exist

• TypeError – if self.sampleMetadataExcluded is not a list

• AttributeError – if self.intensityDataExcluded does not exist

• TypeError – if self.intensityDataExcluded is not a list

• ValueError – if self.intensityDataExcluded does not have the same number of exclu-
sions as self.sampleMetadataExcluded

• AttributeError – if self.featureMetadataExcluded does not exist

• TypeError – if self.featureMetadataExcluded is not a list

• ValueError – if self.featureMetadataExcluded does not have the same number of ex-
clusions as self.sampleMetadataExcluded

• AttributeError – if self.excludedFlag does not exist

• TypeError – if self.excludedFlag is not a list

• ValueError – if self.excludedFlag does not have the same number of exclusions as
self.sampleMetadataExcluded

initialiseMasks()
Re-initialise featureMask and sampleMask to match the current dimensions of intensityData,
and include all samples.

24 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

updateMasks(filterSamples=True, filterFeatures=True, sampleTypes=[<SampleType.StudySample>,
<SampleType.StudyPool>, <SampleType.ExternalReference>, <Sam-
pleType.MethodReference>, <SampleType.ProceduralBlank>], assay-
Roles=[<AssayRole.Assay>, <AssayRole.PrecisionReference>, <Assay-
Role.LinearityReference>, <AssayRole.Blank>], **kwargs)

Update sampleMask and featureMask according to parameters.

updateMasks() sets sampleMask or featureMask to False for those items failing analytical
criteria.

Note: To avoid reintroducing items manually excluded, this method only ever sets items to False,
therefore if you wish to move from more stringent criteria to a less stringent set, you will need to reset the
mask to all True using initialiseMasks().

Parameters

• filterSamples (bool) – If False don’t modify sampleMask

• filterFeatures (bool) – If False don’t modify featureMask

• sampleTypes (SampleType) – List of types of samples to retain

• sampleRoles (AssayRole) – List of assays roles to retain

applyMasks()
Permanently delete elements masked (those set to False) in sampleMask and featureMask, from
featureMetadata, sampleMetadata, and intensityData.

addSampleInfo(descriptionFormat=None, filePath=None, filetype=None, **kwargs)
Load additional metadata and map it in to the sampleMetadata table.

Possible options:

• ‘Basic CSV’ Joins the sampleMetadata table with the data in the csv file at filePath=, matching
on the ‘Sample File Name’ column in both (see Sample Metadata).

• ‘Filenames’ Parses sample information out of the filenames, based on the named capture groups in
the regex passed in filenamespec

• ‘Raw Data’ Extract analytical parameters from raw data files

• ‘ISATAB’ ISATAB study designs

Parameters

• descriptionFormat (str) – Format of metadata to be added

• filePath (str) – Path to the additional data to be added

Raises NotImplementedError – if the descriptionFormat is not understood

addFeatureInfo(filePath=None, descriptionFormat=None, featureId=None, **kwargs)
Load additional metadata and map it in to the featureMetadata table.

Possible options:

• ‘Reference Ranges’ JSON file specifying upper and lower reference ranges for a feature.

Parameters

• filePath (str) – Path to the additional data to be added

5.4. Dataset Specific Syntax and Parameters 25

nPYc Toolbox Documentation, Release 1.2.6

• descriptionFormat (str) –

• featureId (str) – Unique feature Id field in the metadata file provided to match with
internal Feature Name

Raises NotImplementedError – if the descriptionFormat is not understood

excludeSamples(sampleList, on=’Sample File Name’, message=’User Excluded’)
Sets the sampleMask for the samples listed in sampleList to False to mask them from the dataset.

Parameters

• sampleList (list) – A list of sample IDs to be excluded

• on (str) – name of the column in sampleMetadata to match sampleList against,
defaults to ‘Sample File Name’

• message (str) – append this message to the ‘Exclusion Details’ field for each sample
excluded, defaults to ‘User Excluded’

Returns a list of IDs passed in sampleList that could not be matched against the sample IDs
present

Return type list

excludeFeatures(featureList, on=’Feature Name’, message=’User Excluded’)
Masks the features listed in featureList from the dataset.

Parameters

• featureList (list) – A list of feature IDs to be excluded

• on (str) – name of the column in featureMetadata to match featureList against,
defaults to ‘Feature Name’

• message (str) – append this message to the ‘Exclusion Details’ field for each feature
excluded, defaults to ‘User Excluded’

Returns A list of ID passed in featureList that could not be matched against the feature IDs
present.

Return type list

exportDataset(destinationPath=’.’, saveFormat=’CSV’, isaDetailsDict={}, withExclusions=True,
escapeDelimiters=False, filterMetadata=True)

Export dataset object in a variety of formats for import in other software, the export is named according to
the name attribute of the Dataset object.

Possible save formats are:

• CSV Basic CSV output, featureMetadata, sampleMetadata and intensityData are
written to three separate CSV files in desitinationPath

• UnifiedCSV Exports featureMetadata, sampleMetadata and intensityData concate-
nated into a single CSV file

• ISATAB Exports the sampleMetadata in the ISATAB format

Parameters

• destinationPath (str) – Save data into the directory specified here

• format (str) – File format for saved data, defaults to CSV.

• detailsDict (dict) – Contains several key: value pairs required to for exporting
ISATAB.

26 Chapter 5. Datasets

http://isa-tools.org

nPYc Toolbox Documentation, Release 1.2.6

detailsDict should have the format: detailsDict = {

‘investigation_identifier’ : “i1”, ‘investigation_title’ : “Give it a title”, ‘investiga-
tion_description’ : “Add a description”, ‘investigation_submission_date’ : “2016-11-03”, ‘in-
vestigation_public_release_date’ : “2016-11-03”, ‘first_name’ : “Noureddin”, ‘last_name’ :
“Sadawi”, ‘affiliation’ : “University”, ‘study_filename’ : “my_ms_study”, ‘study_material_type’
: “Serum”, ‘study_identifier’ : “s1”, ‘study_title’ : “Give the study a title”, ‘study_description’ :
“Add study description”, ‘study_submission_date’ : “2016-11-03”, ‘study_public_release_date’
: “2016-11-03”, ‘assay_filename’ : “my_ms_assay”

}

Parameters

• withExclusions (bool) – If True mask features and samples will be excluded

• escapeDelimiters (bool) – If True remove characters commonly used as delim-
iters in csv files from metadata

• filterMetadata (bool) – If True does not export the sampleMetadata and
featureMetadata columns listed in self.Attributes[‘sampleMetadataNotExported’] and
self.Attributes[‘featureMetadataNotExported’]

Raises ValueError – if saveFormat is not understood

getFeatures(featureIDs, by=None, useMasks=True)
Get a feature or list of features by name or ranges.

If VariableType is Discrete, getFeature() expects either a single or list of values, and match-
ing features are returned. If VariableType is Spectral, pass either a single, or list of (min, max)
tuples, the features returned will be a slice of the combined ranges. If the ranges passed overlap, the union
will be returned.

Parameters

• featureIDs – A single or list of feature IDs to return

• by (None or str) – Column in featureMetadata to search in, None use the col-
umn defined in Attributes[‘Feature Names’]

Returns (featureMetadata, intensityData)

Return type (pandas.Dataframe, numpy.ndarray)

class nPYc.objects.MSDataset(datapath, fileType=’QI’, sop=’GenericMS’, **kwargs)
MSDataset extends Dataset to represent both peak-picked LC- or DI-MS datasets (discrete variables), and
Continuum mode (spectral) DI-MS datasets.

Objects can be initialised from a variety of common data formats, currently peak-picked data from Progenesis
QI or XCMS, and targeted Biocrates datasets.

• Progenesis QI QI import operates on csv files exported via the ‘Export Compound Measurements’ menu
option in QI. Import requires the presence of both normalised and raw datasets, but will only import
the raw meaturenents.

• XCMS XCMS import operates on the csv files generated by XCMS with the peakTable() method. By
default, the csv is expected to have 14 columns of feature parameters, with the intensity values for the
first sample coming on the 15 column. However, the number of columns to skip is dataset dependent
and can be set with the (e noFeatureParams= keyword argument.

• Biocrates Operates on spreadsheets exported from Biocrates MetIDQ. By default loads data from the
sheet named ‘Data Export’, this may be overridden with the sheetName= argument, If the

5.4. Dataset Specific Syntax and Parameters 27

nPYc Toolbox Documentation, Release 1.2.6

number of sample metadata columns differes from the default, this can be overridden with the
noSampleParams= argument.

correlationToDilution
Returns the correlation of features to dilution as calculated on samples marked as ‘Dilution Series’ in
sampleMetadata, with dilution expressed in ‘Dilution’.

Returns Vector of feature correlations to dilution

Return type numpy.ndarray

artifactualLinkageMatrix
Gets overlapping artifactual features.

rsdSP
Returns percentage relative standard deviations for each feature in the dataset, calculated on samples with
the Assay Role PrecisionReference and Sample Type StudyPool in sampleMetadata.

Returns Vector of feature RSDs

Return type numpy.ndarray

rsdSS
Returns percentage relative standard deviations for each feature in the dataset, calculated on samples with
the Assay Role Assay and Sample Type StudySample in sampleMetadata.

Returns Vector of feature RSDs

Return type numpy.ndarray

applyMasks()
Permanently delete elements masked (those set to False) in sampleMask and featureMask, from
featureMetadata, sampleMetadata, and intensityData.

Resets feature linkage matrix and feature correlations.

updateMasks(filterSamples=True, filterFeatures=True, sampleTypes=[<SampleType.StudySample>,
<SampleType.StudyPool>, <SampleType.ExternalReference>, <Sam-
pleType.MethodReference>, <SampleType.ProceduralBlank>], assay-
Roles=[<AssayRole.Assay>, <AssayRole.PrecisionReference>, <Assay-
Role.LinearityReference>, <AssayRole.Blank>], featureFilters={’artifactualFilter’:
False, ’blankFilter’: False, ’correlationToDilutionFilter’: True, ’rsdFilter’: True,
’varianceRatioFilter’: True}, **kwargs)

Update sampleMask and featureMask according to QC parameters.

updateMasks() sets sampleMask or featureMask to False for those items failing analytical
criteria.

Note: To avoid reintroducing items manually excluded, this method only ever sets items to False,
therefore if you wish to move from more stringent criteria to a less stringent set, you will need to reset the
mask to all True using initialiseMasks().

Parameters

• filterSamples (bool) – If False don’t modify sampleMask

• filterFeatures (bool) – If False don’t modify featureMask

• sampleTypes (SampleType) – List of types of samples to retain

• assayRoles (AssayRole) – List of assays roles to retain

28 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

• correlationThreshold (None or float) – Mask features with a correlation be-
low this value. If None, use the value from Attributes[‘corrThreshold’]

• rsdThreshold (None or float) – Mask features with a RSD below this value. If
None, use the value from Attributes[‘rsdThreshold’]

• varianceRatio (None or float) – Mask features where the RSD measured in
study samples is below that measured in study reference samples multiplied by varianceR-
atio

• withArtifactualFiltering (None or bool) – If None use the value from
Attributes['artifactualFilter']. If False doesn’t apply artifactual filter-
ing. If Attributes['artifactualFilter'] is set to False artifactual filtering
will not take place even if withArtifactualFiltering is set to True.

• deltaMzArtifactual (None or float) – Maximum allowed m/z distance be-
tween two grouped features. If None, use the value from Attributes[‘deltaMzArtifactual’]

• overlapThresholdArtifactual (None or float) – Minimum peak
overlap between two grouped features. If None, use the value from At-
tributes[‘overlapThresholdArtifactual’]

• corrThresholdArtifactual (None or float) – Minimum corre-
lation between two grouped features. If None, use the value from At-
tributes[‘corrThresholdArtifactual’]

• blankThreshold (None, False, or float) – Mask features thats median inte-
sity falls below blankThreshold x the level in the blank. If False do not filter, if None
use the cutoff from Attributes[‘blankThreshold’], otherwise us the cutoff scaling factor
provided

saveFeatureMask()
Updates featureMask and saves as ‘Passing Selection’ in self.featureMetadata

addSampleInfo(descriptionFormat=None, filePath=None, filenameSpec=None, filetype=’Waters
.raw’, **kwargs)

Load additional metadata and map it in to the sampleMetadata table.

Possible options:

• ‘NPC LIMS’ NPC LIMS files mapping files names of raw analytical data to sample IDs

• ‘NPC Subject Info’ Map subject metadata from a NPC sample manifest file (format defined in ‘PC-
SOP.082’)

• ‘Raw Data’ Extract analytical parameters from raw data files

• ‘ISATAB’ ISATAB study designs

• ‘Filenames’ Parses sample information out of the filenames, based on the named capture groups in
the regex passed in filenamespec

• ‘Basic CSV’ Joins the sampleMetadata table with the data in the csv file at filePath=, matching
on the ‘Sample File Name’ column in both.

Parameters

• descriptionFormat (str) – Format of metadata to be added

• filePath (str) – Path to the additional data to be added

• filenameSpec (None or str) – Only used if descriptionFormat is ‘Filenames’. A
regular expression that extracts sample-type information into the following named capture

5.4. Dataset Specific Syntax and Parameters 29

nPYc Toolbox Documentation, Release 1.2.6

groups: ‘fileName’, ‘baseName’, ‘study’, ‘chromatography’ ‘ionisation’, ‘instrument’,
‘groupingKind’ ‘groupingNo’, ‘injectionKind’, ‘injectionNo’, ‘reference’, ‘exclusion’ ‘re-
runs’, ‘extraInjections’, ‘exclusion2’. if None is passed, use the filenameSpec key in At-
tributes, loaded from the SOP json

Raises NotImplementedError – if the descriptionFormat is not understood

amendBatches(sampleRunOrder)
Creates a new batch starting at the sample index in sampleRunOrder, and amends subsequent batch num-
bers in sampleMetadata[‘Correction Batch’]

Parameters sampleRunOrder (int) – Index of first sample in new batch

artifactualFilter(featMask=None)
Filter artifactual features on top of the featureMask already present if none given as input Keep feature
with the highest intensity on the mean spectra

Parameters featMask (numpy.ndarray or None) – A featureMask (True for inclu-
sion), if None, use featureMask

Returns Amended featureMask

Return type numpy.ndarray

excludeFeatures(featureList, on=’Feature Name’, message=’User Excluded’)
Masks the features listed in featureList from the dataset.

Parameters

• featureList (list) – A list of feature IDs to be excluded

• on (str) – name of the column in featureMetadata to match featureList against,
defaults to ‘Feature Name’

• message (str) – append this message to the ‘Exclusion Details’ field for each feature
excluded, defaults to ‘User Excluded’

Returns A list of ID passed in featureList that could not be matched against the feature IDs
present.

Return type list

initialiseMasks()
Re-initialise featureMask and sampleMask to match the current dimensions of intensityData,
and include all samples.

validateObject(verbose=True, raiseError=False, raiseWarning=True)
Checks that all the attributes specified in the class definition are present and of the required class and/or
values.

Returns 4 boolean: is the object a Dataset < a basic MSDataset < has the object parameters for QC < has
the object sample metadata.

To employ all class methods, the most inclusive (has the object sample metadata) must be successful:

• ‘Basic MSDataset’ checks Dataset types and uniqueness as well as additional attributes.

• ‘has parameters for QC’ is ‘Basic MSDataset’ + sampleMetadata[[‘SampleType, AssayRole, Dilu-
tion, Run Order, Batch, Correction Batch, Sample Base Name]]

• ‘has sample metadata’ is ‘has parameters for QC’ + sampleMetadata[[‘Sample ID’, ‘Subject ID’,
‘Matrix’]]

30 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

Column type() in pandas.DataFrame are established on the first sample when necessary Does not
check for uniqueness in sampleMetadata['Sample File Name'] Does not currently check
Attributes['Raw Data Path'] type Does not currently check corrExclusions type

Parameters

• verbose (bool) – if True the result of each check is printed (default True)

• raiseError (bool) – if True an error is raised when a check fails and the validation is
interrupted (default False)

• raiseWarning (bool) – if True a warning is raised when a check fails

Returns A dictionary of 4 boolean with True if the Object conforms to the corresponding
test. ‘Dataset’ conforms to Dataset, ‘BasicMSDataset’ conforms to Dataset + basic
MSDataset, ‘QC’ BasicMSDataset + object has QC parameters, ‘sampleMetadata’ QC +
object has sample metadata information

Return type dict

Raises

• TypeError – if the Object class is wrong

• AttributeError – if self.Attributes[‘rtWindow’] does not exist

• TypeError – if self.Attributes[‘rtWindow’] is not an int or float

• AttributeError – if self.Attributes[‘msPrecision’] does not exist

• TypeError – if self.Attributes[‘msPrecision’] is not an int or float

• AttributeError – if self.Attributes[‘varianceRatio’] does not exist

• TypeError – if self.Attributes[‘varianceRatio’] is not an int or float

• AttributeError – if self.Attributes[‘blankThreshold’] does not exist

• TypeError – if self.Attributes[‘blankThreshold’] is not an int or float

• AttributeError – if self.Attributes[‘corrMethod’] does not exist

• TypeError – if self.Attributes[‘corrMethod’] is not a str

• AttributeError – if self.Attributes[‘corrThreshold’] does not exist

• TypeError – if self.Attributes[‘corrThreshold’] is not an int or float

• AttributeError – if self.Attributes[‘rsdThreshold’] does not exist

• TypeError – if self.Attributes[‘rsdThreshold’] is not an int or float

• AttributeError – if self.Attributes[‘artifactualFilter’] does not exist

• TypeError – if self.Attributes[‘artifactualFilter’] is not a bool

• AttributeError – if self.Attributes[‘deltaMzArtifactual’] does not exist

• TypeError – if self.Attributes[‘deltaMzArtifactual’] is not an int or float

• AttributeError – if self.Attributes[‘overlapThresholdArtifactual’] does not exist

• TypeError – if self.Attributes[‘overlapThresholdArtifactual’] is not an int or float

• AttributeError – if self.Attributes[‘corrThresholdArtifactual’] does not exist

• TypeError – if self.Attributes[‘corrThresholdArtifactual’] is not an int or float

• AttributeError – if self.Attributes[‘FeatureExtractionSoftware’] does not exist

5.4. Dataset Specific Syntax and Parameters 31

nPYc Toolbox Documentation, Release 1.2.6

• TypeError – if self.Attributes[‘FeatureExtractionSoftware’] is not a str

• AttributeError – if self.Attributes[‘Raw Data Path’] does not exist

• TypeError – if self.Attributes[‘Raw Data Path’] is not a str

• AttributeError – if self.Attributes[‘Feature Names’] does not exist

• TypeError – if self.Attributes[‘Feature Names’] is not a str

• TypeError – if self.VariableType is not an enum ‘VariableType’

• AttributeError – if self.corrExclusions does not exist

• AttributeError – if self._correlationToDilution does not exist

• TypeError – if self._correlationToDilution is not a numpy.ndarray

• AttributeError – if self._artifactualLinkageMatrix does not exist

• TypeError – if self._artifactualLinkageMatrix is not a pandas.DataFrame

• AttributeError – if self._tempArtifactualLinkageMatrix does not exist

• TypeError – if self._tempArtifactualLinkageMatrix is not a pandas.DataFrame

• AttributeError – if self.fileName does not exist

• TypeError – if self.fileName is not a str

• AttributeError – if self.filePath does not exist

• TypeError – if self.filePath is not a str

• ValueError – if self.sampleMetadata does not have the same number of samples as
self._intensityData

• TypeError – if self.sampleMetadata[‘Sample File Name’] is not str

• TypeError – if self.sampleMetadata[‘AssayRole’] is not an enum ‘AssayRole’

• TypeError – if self.sampleMetadata[‘SampleType’] is not an enum ‘SampleType’

• TypeError – if self.sampleMetadata[‘Dilution’] is not an int or float

• TypeError – if self.sampleMetadata[‘Batch’] is not an int or float

• TypeError – if self.sampleMetadata[‘Correction Batch’] is not an int or float

• TypeError – if self.sampleMetadata[‘Run Order’] is not an int

• TypeError – if self.sampleMetadata[‘Acquired Time’] is not a datetime

• TypeError – if self.sampleMetadata[‘Sample Base Name’] is not str

• LookupError – if self.sampleMetadata does not have a Matrix column

• TypeError – if self.sampleMetadata[‘Matrix’] is not a str

• LookupError – if self.sampleMetadata does not have a Subject ID column

• TypeError – if self.sampleMetadata[‘Subject ID’] is not a str

• TypeError – if self.sampleMetadata[‘Sample ID’] is not a str

• ValueError – if self.featureMetadata does not have the same number of features as
self._intensityData

• TypeError – if self.featureMetadata[‘Feature Name’] is not a str

• ValueError – if self.featureMetadata[‘Feature Name’] is not unique

32 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

• LookupError – if self.featureMetadata does not have a m/z column

• TypeError – if self.featureMetadata[‘m/z’] is not an int or float

• LookupError – if self.featureMetadata does not have a Retention Time column

• TypeError – if self.featureMetadata[‘Retention Time’] is not an int or float

• ValueError – if self.sampleMask has not been initialised

• ValueError – if self.sampleMask does not have the same number of samples as
self._intensityData

• ValueError – if self.featureMask has not been initialised

• ValueError – if self.featureMask does not have the same number of features as
self._intensityData

class nPYc.objects.NMRDataset(datapath, fileType=’Bruker’, sop=’GenericNMRurine’, pulsepro-
gram= ’noesygpp1d’, **kwargs)

NMRDataset extends Dataset to represent both spectral and peak-picked NMR datasets.

Objects can be initialised from a variety of common data formats, including Bruker-format raw data, and BI-
LISA targeted lipoprotein analysis.

• Bruker When loading Bruker format raw spectra (1r files), all directores below datapath will be
scanned for valid raw data, and those matching pulseprogram loaded and aligned onto a common
scale as defined in sop.

• BI-LISA BI-LISA data can be read from Excel workbooks, the name of the sheet containing the data
to be loaded should be passed in the pulseProgram argument. Feature descriptors will be loaded
from the ‘Analytes’ sheet, and file names converted back to the ExperimentName/expno format from
ExperimentName_EXPNO_expno.

Parameters

• fileType (str) – Type of data to be loaded

• sheetname (str) – Load data from the specifed sheet of the Excel workbook

• pulseprogram (str) – When loading raw data, only import spectra aquired with pulse-
program

addSampleInfo(descriptionFormat=None, filePath=None, filenameSpec=None, **kwargs)
Load additional metadata and map it in to the sampleMetadata table.

Possible options:

• ‘NPC LIMS’ NPC LIMS files mapping files names of raw analytical data to sample IDs

• ‘NPC Subject Info’ Map subject metadata from a NPC sample manifest file (format defined in ‘PC-
SOP.082’)

• ‘Raw Data’ Extract analytical parameters from raw data files

• ‘ISATAB’ ISATAB study designs

• ‘Filenames’ Parses sample information out of the filenames, based on the named capture groups in
the regex passed in filenamespec

• ‘Basic CSV’ Joins the sampleMetadata table with the data in the csv file at filePath=, matching
on the ‘Sample File Name’ column in both.

Parameters

5.4. Dataset Specific Syntax and Parameters 33

nPYc Toolbox Documentation, Release 1.2.6

• descriptionFormat (str) – Format of metadata to be added

• filePath (str) – Path to the additional data to be added

• filenameSpec (None or str) – Only used if descriptionFormat is ‘Filenames’. A
regular expression that extracts sample-type information into the following named capture
groups: ‘fileName’, ‘baseName’, ‘study’, ‘chromatography’ ‘ionisation’, ‘instrument’,
‘groupingKind’ ‘groupingNo’, ‘injectionKind’, ‘injectionNo’, ‘reference’, ‘exclusion’ ‘re-
runs’, ‘extraInjections’, ‘exclusion2’. if None is passed, use the filenameSpec key in At-
tributes, loaded from the SOP json

Raises NotImplementedError – if the descriptionFormat is not understood

updateMasks(filterSamples=True, filterFeatures=True, sampleTypes=[<SampleType.StudySample>,
<SampleType.StudyPool>, <SampleType.ExternalReference>, <Sam-
pleType.MethodReference>, <SampleType.ProceduralBlank>], assay-
Roles=[<AssayRole.Assay>, <AssayRole.PrecisionReference>, <Assay-
Role.LinearityReference>, <AssayRole.Blank>], exclusionRegions=None, sample-
QCChecks=[], **kwargs)

Update sampleMask and featureMask according to parameters.

updateMasks() sets sampleMask or featureMask to False for those items failing analytical
criteria.

Note: To avoid reintroducing items manually excluded, this method only ever sets items to False,
therefore if you wish to move from more stringent criteria to a less stringent set, you will need to reset the
mask to all True using initialiseMasks().

Parameters

• filterSamples (bool) – If False don’t modify sampleMask

• filterFeatures (bool) – If False don’t modify featureMask

• sampleTypes (SampleType) – List of types of samples to retain

• sampleRoles (AssayRole) – List of assays roles to retain

• exclusionRegions (list of tuple) – If None Exclude ranges defined in
Attributes[‘exclusionRegions’]

• sampleQCChecks (list) – Which quality control metrics to use.

plot(spectra, labels, interactive=False)
Plots a set of nmr spectra. If interactive is False, returns a static matplotlib plot. If True, then plotly is used
to generate an interactive plot.

Parameters

• spectra – The specific ‘labels’ of the spectra to plot. By default all spectra are plotted.

• labels – Which labels to select

• interactive – Use matplotlib (False) or plotly (True)

Returns Displays the NMR data and returns either a matplotlib axis object or a plotly figure
dictionary

34 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

class nPYc.objects.TargetedDataset(dataPath, fileType=’TargetLynx’, sop=’Generic’,
**kwargs)

TargetedDataset extends Dataset to represent quantitative datasets, where compounds are already iden-
tified, the exactitude of the quantification can be established, units are known and calibration curve or internal
standards are employed. The TargetedDataset class include methods to apply limits of quantification
(LLOQ and ULOQ), merge multiple analytical batch, and report accuracy and precision of each measurements.

In addition to the structure of Dataset, TargetedDataset requires the following attributes:

• expectedConcentration: A 𝑛 × 𝑚 pandas dataframe of expected concentrations (matching the
intensityData dimension), with column names matching featureMetadata[‘Feature
Name’]

• calibration: A dictionary containing pandas dataframe describing calibration samples:

– calibration['calibIntensityData']: A 𝑟 x 𝑚 numpy matrix of measurements.
Features must match features in intensityData

– calibration['calibSampleMetadata']: A 𝑟 x 𝑚 pandas dataframe of calibration
sample identifiers and metadata

– calibration['calibFeatureMetadata']: A 𝑚 × 𝑞 pandas dataframe of feature iden-
tifiers and metadata

– calibration['calibExpectedConcentration']: A 𝑟 × 𝑚 pandas dataframe of cal-
ibration samples expected concentrations

• Attributes must contain the following (can be loaded from a method specific JSON on import):

– methodName: A (str) name of the method

– externalID: A list of external ID, each external ID must also be present in Attributes as a list of
identifier (for that external ID) for each feature. For example, if externalID=['PubChem
ID'], Attributes['PubChem ID']=['ID1','ID2','','ID75']

• featureMetadata expects the following columns:

– quantificationType: A QuantificationType enum specifying the exactitude of the
quantification procedure employed.

– calibrationMethod: A CalibrationMethod enum specifying the calibration method
employed.

– Unit: A (str) unit corresponding the the feature measurement value.

– LLOQ: The lowest limit of quantification, used to filter concentrations < LLOQ

– ULOQ: The upper limit of quantification, used to filter concentrations > ULOQ

– externalID: All externalIDs listed in Attributes['externalID'] must be present as
their own column

Currently targeted assay results processed using TargetLynx or Bruker quantification results can be imported.
To create an import for any other form of semi-quantitative or quantitative results, the procedure is as follow:

• Create a new fileType == 'myMethod' entry in __init__()

• Define functions to populate all expected dataframes (using file readers, JSON,. . .)

• Separate calibration samples from study samples (store in calibration). If none exist, intialise empty
dataframes with the correct number of columns and column names.

• Execute pre-processing steps if required (note: all feature values should be expressed in the unit listed in
featureMetadata['Unit'])

5.4. Dataset Specific Syntax and Parameters 35

nPYc Toolbox Documentation, Release 1.2.6

• Apply limits of quantification using _applyLimitsOfQuantification(). (This function does
not apply limits of quantification to features marked as QuantificationType == Quantification-
Type.Monitored for compounds monitored for relative information.)

The resulting TargetedDatset created must satisfy to the criteria for BasicTargetedDataset, which can be
checked with validatedObject() (list the minimum requirements for all class methods).

• fileType == 'TargetLynx' to import data processed using TargetLynx

TargetLynx import operates on xml files exported via the ‘File -> Export -> XML’ TargetLynx
menu option. Import requires a calibration_report.csv providing lower and upper lim-
its of quantification (LLOQ, ULOQ) with the calibrationReportPath keyword argument.

Targeted data measurements as well as calibration report information are read and mapped with
pre-defined SOPs. All measurments are converted to pre-defined units and measurements inferior
to the lowest limits of quantification or superior to the upper limits of quantification are replaced.
Once the import is finished, only analysed samples are returned (no calibration samples) and only
features mapped onto the pre-defined SOP and sufficiently described.

Instructions to created new TargetLynx SOP can be found on the generation of targeted SOPs
page.

Example: TargetedDataset(datapath, fileType='TargetLynx',
sop='OxylipinMS', calibrationReportPath=calibrationReportPath,
sampleTypeToProcess=['Study Sample','QC'], noiseFilled=False,
onlyLLOQ=False, responseReference=None)

– sop Currently implemented are ‘OxylipinMS’ and ‘AminoAcidMS’

AminoAcidMS: Gray N. et al. Human Plasma and Serum via Precolumn Deriva-
tization with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate: Application to
Acetaminophen-Induced Liver Failure. Analytical Chemistry, 2017, 89, 247887.

OxylipinMS: Wolfer AM. et al. Development and Validation of a High-Throughput
Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry Approach for
Screening of Oxylipins and Their Precursors. Analytical Chemistry, 2015, 87
(23),11721–31

– calibrationReportPath Path to the calibration report csv following the provided re-
port template.

The following columns are required (leave an empty value to reject a compound):

* Compound The compound name, identical to the one employed in the SOP json file.

* TargetLynx ID The compound TargetLynx ID, identical to the one employed in the
SOP json file.

* LLOQ Lowest limit of quantification concentration, in the same unit as indicated in
TargetLynx.

* ULOQ Upper limit of quantification concentration, in the same unit as indicated in
TargetLynx.

The following columns are expected by _targetLynxApplyLimitsOfQuantificationNoiseFilled():

* Noise (area) Area integrated in a blank sample at the same retention time as the com-
pound of interest (if left empty noise concentration calculation cannot take place).

* a 𝑎 coefficient in the calibration equation (if left empty noise concentration calculation
cannot take place).

36 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

* b 𝑏 coefficient in the calibration equation (if left empty noise concentration calculation
cannot take place).

The following columns are recommended but not expected:

* Cpd Info Additional information relating to the compound (can be left empty).

* r 𝑟 goodness of fit measure for the calibration equation (can be left empty).

* r2 𝑟2 goodness of fit measure for the calibration equation (can be left empty).

– sampleTypeToProcess List of [‘Study Sample’,’Blank’,’QC’,’Other’] for the sample
types to process as defined in MassLynx. Only samples in ‘sampleTypeToProcess’ are
returned. Calibrants should not be processed and are not returned. Most uses should
only require ‘Study Sample’ as quality controls are identified based on sample names by
subsequent functions. Default value is ‘[‘Study Sample’,’QC’]’.

– noiseFilled If True values <LLOQ will be replaced by a concentration equivalent to the
noise level in a blank. If False <LLOQ is replaced by −𝑖𝑛𝑓 . Default value is ‘False’

– onlyLLOQ If True only correct <LLOQ, if False correct <LLOQ and >ULOQ. Default
value is ‘False’.

– responseReference If noiseFilled=True the noise concentration needs to be calculated.
Provide the ‘Sample File Name’ of a reference sample to use in order to establish the
response to use, or list of samples to use (one per feature). If None, the middle of the
calibration will be employed. Default value is ‘None’.

– keepPeakInfo If keepPeakInfo=True (default False) adds the peakInfo dictionary to
the calibration. peakInfo contains the peakResponse, peakArea, peakConcen-
trationDeviation, peakIntegrationFlag and peakRT.

– keepExcluded If keepExcluded=True (default False), im-
port exclusions (excludedImportSampleMetadata,
excludedImportFeatureMetadata, excludedImportIntensityData
and excludedImportExpectedConcentration) are kept in the object.

– keepIS If keepIS=True (default False), features marked as Internal Standards (IS) are re-
tained.

• fileType = 'Bruker Quantification' to import Bruker quantification results

– nmrRawDataPath Path to the parent folder where all result files are stored. All sub-
folders will be parsed and the .xml results files matching the fileNamePattern
imported.

– fileNamePattern Regex to recognise the result data xml files

– pdata To select the right pdata folders (default 1)

Two form of Bruker quantification results are supported and selected using the sop option:
BrukerQuant-UR and Bruker BI-LISA

– sop = 'BrukerQuant-UR'

Example: TargetedDataset(nmrRawDataPath,
fileType='Bruker Quantification',
sop='BrukerQuant-UR', fileNamePattern='.*?
urine_quant_report_b\.xml$', unit='mmol/mol Crea')

* unit If features are duplicated with different units, unit limits the import to
features matching said unit. (In case of duplication and no unit, all available
units will be listed)

5.4. Dataset Specific Syntax and Parameters 37

nPYc Toolbox Documentation, Release 1.2.6

– sop = ''BrukerBI-LISA' Example: TargetedDataset(nmrRawDataPath,
fileType='Bruker Quantification', sop='BrukerBI-LISA',
fileNamePattern='.*?results\.xml$')

rsdSP
Returns percentage relative standard deviations for each feature in the dataset, calculated on samples
with the Assay Role PrecisionReference and Sample Type StudyPool in sampleMetadata.
Implemented as a back-up to accuracyPrecision() when no expected concentrations are known

Returns Vector of feature RSDs

Return type numpy.ndarray

rsdSS
Returns percentage relative standard deviations for each feature in the dataset, calculated on samples with
the Assay Role Assay and Sample Type StudySample in sampleMetadata.

Returns Vector of feature RSDs

Return type numpy.ndarray

mergeLimitsOfQuantification(keepBatchLOQ=False, onlyLLOQ=False)
Update limits of quantification and apply LLOQ/ULOQ using the lowest common denominator across all
batch (after a __add__()). Keep the highest LLOQ and lowest ULOQ.

Parameters

• keepBatchLOQ (bool) – If True do not remove
each batch LOQ (featureMetadata['LLOQ_batchX'],
featureMetadata['ULOQ_batchX'])

• onlyLLOQ (bool) – if True only correct <LLOQ, if False correct <LLOQ and
>ULOQ

Raises

• ValueError – if targetedData does not satisfy to the BasicTargetedDataset defini-
tion on input

• ValueError – if number of batch, LLOQ_batchX and ULOQ_batchX do not match

• ValueError – if targetedData does not satisfy to the BasicTargetedDataset defini-
tion after LOQ merging

• Warning – if featureMetadata['LLOQ'] or
featureMetadata['ULOQ'] already exist and will be overwritten.

exportDataset(destinationPath=’.’, saveFormat=’CSV’, withExclusions=True, escapeDelim-
iters=False, filterMetadata=True)

Calls exportDataset() and raises a warning if normalisation is employed as TargetedDataset
intensityData can be left-censored.

validateObject(verbose=True, raiseError=False, raiseWarning=True)
Checks that all the attributes specified in the class definition are present and of the required class and/or
values.

Returns 4 boolean: is the object a Dataset < a basic TargetedDataset < has the object parameters for QC
< has the object sample metadata.

To employ all class methods, the most inclusive (has the object sample metadata) must be successful:

• ‘Basic TargetedDataset’ checks TargetedDataset types and uniqueness as well as additional
attributes.

38 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

• ‘has parameters for QC’ is ‘Basic TargetedDataset’ + sampleMetadata[[‘SampleType, AssayRole,
Dilution, Run Order, Batch, Correction Batch, Sample Base Name]]

• ‘has sample metadata’ is ‘has parameters for QC’ + sampleMetadata[[‘Sample ID’, ‘Subject ID’,
‘Matrix’]]

calibration['calibIntensityData'] must be initialised even if no samples are
present calibration['calibSampleMetadata'] must be initialised even if no sam-
ples are present, use: pandas.DataFrame(None, columns=self.sampleMetadata.
columns.values.tolist()) calibration['calibFeatureMetadata'] must
be initialised even if no samples are present, use a copy of self.featureMetadata
calibration['calibExpectedConcentration'] must be initialised even if no samples
are present, use: pandas.DataFrame(None, columns=self.expectedConcentration.
columns.values.tolist()) Calibration features must be identical to the usual features. Number
of calibration samples and features must match across the 4 calibration tables If ‘sampleMetadataEx-
cluded’, ‘intensityDataExcluded’, ‘featureMetadataExcluded’, ‘expectedConcentrationExcluded’ or
‘excludedFlag’ exist, the existence and number of exclusions (based on ‘sampleMetadataExcluded’) is
checked

Column type() in pandas.DataFrame are established on the first sample (for non int/float)
featureMetadata are search for column names containing ‘LLOQ’ & ‘ULOQ’ to allow for
‘LLOQ_batch. . . ’ after __add__(), the first column matching is then checked for dtype If
datasets are merged, calibration is a list of dict, and number of features is only kept con-
stant inside each dict Does not check for uniqueness in sampleMetadata['Sample File
Name'] Does not check columns inside calibration['calibSampleMetadata'] Does not
check columns inside calibration['calibFeatureMetadata'] Does not currently check for
Attributes['Feature Name']

Parameters

• verbose (bool) – if True the result of each check is printed (default True)

• raiseError (bool) – if True an error is raised when a check fails and the valida-
tion is interrupted (default False)

• raiseWarning (bool) – if True a warning is raised when a check fails

Returns A dictionary of 4 boolean with True if the Object conforms to the corresponding
test. ‘Dataset’ conforms to Dataset, ‘BasicTargetedDataset’ conforms to Dataset
+ basic TargetedDataset, ‘QC’ BasicTargetedDataset + object has QC parameters,
‘sampleMetadata’ QC + object has sample metadata information

Return type dict

Raises

• TypeError – if the Object class is wrong

• AttributeError – if self.Attributes[‘methodName’] does not exist

• TypeError – if self.Attributes[‘methodName’] is not a str

• AttributeError – if self.Attributes[‘externalID’] does not exist

• TypeError – if self.Attributes[‘externalID’] is not a list

• TypeError – if self.VariableType is not an enum ‘VariableType’

• AttributeError – if self.fileName does not exist

• TypeError – if self.fileName is not a str or list

• AttributeError – if self.filePath does not exist

5.4. Dataset Specific Syntax and Parameters 39

nPYc Toolbox Documentation, Release 1.2.6

• TypeError – if self.filePath is not a str or list

• ValueError – if self.sampleMetadata does not have the same number of samples
as self._intensityData

• TypeError – if self.sampleMetadata[‘Sample File Name’] is not str

• TypeError – if self.sampleMetadata[‘AssayRole’] is not an enum ‘AssayRole’

• TypeError – if self.sampleMetadata[‘SampleType’] is not an enum ‘SampleType’

• TypeError – if self.sampleMetadata[‘Dilution’] is not an int or float

• TypeError – if self.sampleMetadata[‘Batch’] is not an int or float

• TypeError – if self.sampleMetadata[‘Correction Batch’] is not an int or float

• TypeError – if self.sampleMetadata[‘Run Order’] is not an int

• TypeError – if self.sampleMetadata[‘Acquired Time’] is not a datetime

• TypeError – if self.sampleMetadata[‘Sample Base Name’] is not str

• LookupError – if self.sampleMetadata does not have a Subject ID column

• TypeError – if self.sampleMetadata[‘Subject ID’] is not a str

• TypeError – if self.sampleMetadata[‘Sample ID’] is not a str

• ValueError – if self.featureMetadata does not have the same number of features
as self._intensityData

• TypeError – if self.featureMetadata[‘Feature Name’] is not a str

• ValueError – if self.featureMetadata[‘Feature Name’] is not unique

• LookupError – if self.featureMetadata does not have a calibrationMethod column

• TypeError – if self.featureMetadata[‘calibrationMethod’] is not an enum ‘Calibra-
tionMethod’

• LookupError – if self.featureMetadata does not have a quantificationType column

• TypeError – if self.featureMetadata[‘quantificationType’] is not an enum ‘Quan-
tificationType’

• LookupError – if self.featureMetadata does not have a Unit column

• TypeError – if self.featureMetadata[‘Unit’] is not a str

• LookupError – if self.featureMetadata does not have a LLOQ or similar column

• TypeError – if self.featureMetadata[‘LLOQ’] or similar is not an int or float

• LookupError – if self.featureMetadata does not have a ULOQ or similar column

• TypeError – if self.featureMetadata[‘ULOQ’] or similar is not an int or float

• LookupError – if self.featureMetadata does not have the ‘externalID’ as columns

• AttributeError – if self.expectedConcentration does not exist

• TypeError – if self.expectedConcentration is not a pandas.DataFrame

• ValueError – if self.expectedConcentration does not have the same number of
samples as self._intensityData

• ValueError – if self.expectedConcentration does not have the same number of
features as self._intensityData

40 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

• ValueError – if self.expectedConcentration column name do not match
self.featureMetadata[‘Feature Name’]

• ValueError – if self.sampleMask is not initialised

• ValueError – if self.sampleMask does not have the same number of samples as
self._intensityData

• ValueError – if self.featureMask has not been initialised

• ValueError – if self.featureMask does not have the same number of features as
self._intensityData

• AttributeError – if self.calibration does not exist

• TypeError – if self.calibration is not a dict

• AttributeError – if self.calibration[‘calibIntensityData’] does not exist

• TypeError – if self.calibration[‘calibIntensityData’] is not a numpy.ndarray

• ValueError – if self.calibration[‘calibIntensityData’] does not have the same num-
ber of features as self._intensityData

• AttributeError – if self.calibration[‘calibSampleMetadata’] does not exist

• TypeError – if self.calibration[‘calibSampleMetadata’] is not a pandas.DataFrame

• ValueError – if self.calibration[‘calibSampleMetadata’] does not have the same
number of samples as self.calibration[‘calibIntensityData’]

• AttributeError – if self.calibration[‘calibFeatureMetadata’] does not exist

• TypeError – if self.calibration[‘calibFeatureMetadata’] is not a pandas.DataFrame

• LookupError – if self.calibration[‘calibFeatureMetadata’] does not have a [‘Fea-
ture Name’] column

• ValueError – if self.calibration[‘calibFeatureMetadata’] does not have the same
number of features as self._intensityData

• AttributeError – if self.calibration[‘calibExpectedConcentration’] does not ex-
ist

• TypeError – if self.calibration[‘calibExpectedConcentration’] is not a pan-
das.DataFrame

• ValueError – if self.calibration[‘calibExpectedConcentration’] does not have the
same number of samples as self.calibration[‘calibIntensityData’]

• ValueError – if self.calibration[‘calibExpectedConcentration’] does not have the
same number of features as self.calibration[‘calibIntensityData’]

• ValueError – if self.calibration[‘calibExpectedConcentration’] column name do
not match self.featureMetadata[‘Feature Name’]

applyMasks()
Permanently delete elements masked (those set to False) in sampleMask and
featureMask, from featureMetadata, sampleMetadata, intensityData and
py:attr:TargetedDataset.expectedConcentration.

Features are excluded in each calibration based on the internal
calibration['calibFeatureMetadata'] (iterate through the list of calibration if 2+
datasets have been joined with __add__()).

5.4. Dataset Specific Syntax and Parameters 41

nPYc Toolbox Documentation, Release 1.2.6

updateMasks(filterSamples=True, filterFeatures=True, sampleTypes=[<SampleType.StudySample>,
<SampleType.StudyPool>], assayRoles=[<AssayRole.Assay>, <Assay-
Role.PrecisionReference>], quantificationTypes=[<QuantificationType.IS>,
<QuantificationType.QuantOwnLabeledAnalogue>, <Quantification-
Type.QuantAltLabeledAnalogue>, <QuantificationType.QuantOther>, <Quantifica-
tionType.Monitored>], calibrationMethods=[<CalibrationMethod.backcalculatedIS>,
<CalibrationMethod.noIS>, <CalibrationMethod.noCalibration>, <Calibration-
Method.otherCalibration>], rsdThreshold=None, **kwargs)

Update sampleMask and featureMask according to QC parameters.

updateMasks() sets sampleMask or featureMask to False for those items failing analytical
criteria.

Similar to updateMasks(), without blankThreshold or artifactual filtering

Note: To avoid reintroducing items manually excluded, this method only ever sets items to False,
therefore if you wish to move from more stringent criteria to a less stringent set, you will need to reset the
mask to all True using initialiseMasks().

Parameters

• filterSamples (bool) – If False don’t modify sampleMask

• filterFeatures (bool) – If False don’t modify featureMask

• sampleTypes (SampleType) – List of types of samples to retain

• assayRoles (AssayRole) – List of assays roles to retain

• quantificationTypes (QuantificationType) – List of quantification
types to retain

• calibrationMethods (CalibrationMethod) – List of calibratio methods to
retain

Raises

• TypeError – if sampleTypes is not a list

• TypeError – if sampleTypes are not a SampleType enum

• TypeError – if assayRoles is not a list

• TypeError – if assayRoles are not an AssayRole enum

• TypeError – if quantificationTypes is not a list

• TypeError – if quantificationTypes are not a QuantificationType enum

• TypeError – if calibrationMethods is not a list

• TypeError – if calibrationMethods are not a CalibrationMethod enum

addSampleInfo(descriptionFormat=None, filePath=None, **kwargs)
Load additional metadata and map it in to the sampleMetadata table.

Possible options:

• ‘NPC Subject Info’ Map subject metadata from a NPC sample manifest file (format defined in
‘PCSOP.082’)

• ‘Raw Data’ Extract analytical parameters from raw data files

42 Chapter 5. Datasets

nPYc Toolbox Documentation, Release 1.2.6

• ‘ISATAB’ ISATAB study designs

• ‘Filenames’ Parses sample information out of the filenames, based on the named capture groups in
the regex passed in filenamespec

• ‘Basic CSV’ Joins the sampleMetadata table with the data in the csv file at filePath=, matching
on the ‘Sample File Name’ column in both.

• ‘Batches’ Interpolate batch numbers for samples between those with defined batch numbers based
on sample acquisitions times

Parameters

• descriptionFormat (str) – Format of metadata to be added

• filePath (str) – Path to the additional data to be added

• filenameSpec (None or str) – Only used if descriptionFormat is ‘File-
names’. A regular expression that extracts sample-type information into the follow-
ing named capture groups: ‘fileName’, ‘baseName’, ‘study’, ‘chromatography’ ‘ion-
isation’, ‘instrument’, ‘groupingKind’ ‘groupingNo’, ‘injectionKind’, ‘injectionNo’,
‘reference’, ‘exclusion’ ‘reruns’, ‘extraInjections’, ‘exclusion2’. if None is passed,
use the filenameSpec key in Attributes, loaded from the SOP json

Raises NotImplementedError – if the descriptionFormat is not understood

accuracyPrecision(onlyPrecisionReferences=False)
Return Precision (percent RSDs) and Accuracy for each SampleType and each unique concentration.
Statistic grouped by SampleType, Feature and unique concentration.

Parameters

• dataset (TargetedDataset) – TargetedDataset object to generate the accuracy
and precision for.

• onlyPrecisionReference (bool) – If True only use samples with the Assay-
Role PrecisionReference.

Returns Dict of Accuracy and Precision dict for each group.

Return type dict(str:dict(str:pandas.DataFrame))

Raises TypeError – if dataset is not an instance of TargetedDataset

5.4. Dataset Specific Syntax and Parameters 43

nPYc Toolbox Documentation, Release 1.2.6

44 Chapter 5. Datasets

CHAPTER 6

Sample Metadata

Using the nPYc-Toolbox, additional study design parameters or sample metadata may be mapped into the Dataset
using the addSampleInfo()method. This additional sample information may be added from a number of different
sources, for example, from an associated CSV file, or from the raw data (see below), ‘addSampleInfo’ extracts the
appropriate information, matches it to the acquired samples, and adds it into the sampleMetadata attribute of the
dataset (a pandas dataframe of sample identifiers and sample associated metadata (see Datasets for details).

6.1 CSV Template for Metadata Import

The ‘Basic CSV’ format specifies a simple method for matching analytical data to metadata using:

dataset.addSampleInfo(descriptionFormat='Basic CSV', filePath='path to basicCSV.csv')

Although optional, it is recommend to generate such a CSV file containing basic metadata about each of the imported
spectra.

The nPYc-Toolbox options contains a default syntax for adding sample metadata in a predefined CSV format.

In brief, this CSV file format expects information to be provided for 6 pre-defined column names, ‘Sample File
Name’, ‘Sample ID’, ‘SampleType’, ‘AssayRole’, ‘Dilution’, ‘Include Sample’. Any extra metadata (such as patient
characteristics or clinical metadata) can be placed in this file, as long as the column names are not in the list of expected
fields.

• ‘Sample ID’: Unique identifier for each sample

• ‘Sample File Name’: the ‘Basic CSV’ file matches based on the entries in the ‘Sample File Name’ column to
the ‘Sample File Name’ in the sampleMetadata table

• ‘AssayRole’: assay role as described in Recommended Study Design Elements

• ‘SampleType’: sample type as described in Recommended Study Design Elements

• ‘Dilution’: Relative dilution factor for each sample

• ‘Include Sample’: where ‘Include Sample’ is False, the sampleMask for that sample will be set to False
and the corresponding sample marked for exclusion from the dataset (see Sample and Feature Masks for details)

45

nPYc Toolbox Documentation, Release 1.2.6

Table 1: Minimal structure of a basic csv file
Sample
ID

Sample File Name AssayRole SampleType Dilu-
tion

Include Sam-
ple

Dilution
1

UnitTest1_LPOS_ToF02_B1SRD01Linearity Refer-
ence

Study Pool 1 TRUE

Dilution
2

UnitTest1_LPOS_ToF02_B1SRD02Linearity Refer-
ence

Study Pool 50 TRUE

Sample 1 UnitTest1_LPOS_ToF02_S1W07 Assay Study Sample 100 TRUE
Sample 2 UnitTest1_LPOS_ToF02_S1W08 Assay Study Sample 100 TRUE
LTR UnitTest1_LPOS_ToF02_S1W11_LTRPrecision Refer-

ence
External Refer-
ence

100 TRUE

SR UnitTest1_LPOS_ToF02_S1W12_SRPrecision Refer-
ence

Study Pool 100 TRUE

Sample 3 UnitTest1_LPOS_ToF02_S1W09_x Assay Study Sample 100 FALSE
Blank 1 UnitTest1_LPOS_ToF02_Blank01 Assay Procedural

Blank
0 TRUE

Any additional columns in the basic csv file will be appended to the sampleMetadata table as additional sample
metadata.

Important Note for LC-MS Datasets

For full nPYc-Toolbox functionality for LC-MS data, there are three additional columns which should be specified,
these are:

• ‘Acquired Time’: time of sample acquisition (date/time format)

• ‘Run Order’: the order in which the samples were acquired (an integer value from 1 to the number of samples
in ‘Acquisition Time’ order)

• ‘Correction Batch’: the Analytical Batch in which each sample was acquired (integer value)

‘Acquired Time’ would routinely be extracted from the raw data (see Analytical Parameter Extraction below) and
‘Run Order’ subsequently automatically inferred from this, however, in cases where this is not possible they can be
added manually as columns to the ‘Basic CSV’ file.

Similarly, ‘Correction Batch’ can be defined in the ‘Basic CSV’ file, or, if all samples were acquired in the same batch,
a column can be added to the sampleMetadata attribute of the LC-MS dataset object after importing into the pipeline
by running:

msData.sampleMetadata['Correction Batch'] = 1

While inclusion of ‘Run Order’ and ‘Correction Batch’ is critical for functionality (namely Batch & Run-Order Cor-
rection and Multivariate Analysis), inclusion of ‘Acquired Time’ does not affect functionality but does enable key
plots relying on this data to be generated.

For a full example csv file with these columns included see ‘DEVSET U RPOS Basic CSV.csv’ (Installation and
Tutorials), but in brief, if adding manually into the ‘Basic CSV’ file the structure of the extra columns might look
something like this:

46 Chapter 6. Sample Metadata

nPYc Toolbox Documentation, Release 1.2.6

Table 2: Additional columns required for full funtionality with LC-MS
datasets (note these can be added)

Sam-
ple
ID

Sample File Name Assay-
Role

Sample-
Type

Di-
lu-
tion

Include
Sample

Acquired
Time

Run
Or-
der

Cor-
rection
Batch

Dilu-
tion
1

UnitTest1_LPOS_ToF02_B1SRD01Linearity
Reference

Study
Pool

1 TRUE 18/01/2018
02:25:00

1 1

Dilu-
tion
2

UnitTest1_LPOS_ToF02_B1SRD02Linearity
Reference

Study
Pool

50 TRUE 18/01/2018
02:40:00

2 1

Sam-
ple
1

UnitTest1_LPOS_ToF02_S1W07Assay Study
Sample

100 TRUE 18/01/2018
02:55:00

3 1

Sam-
ple
2

UnitTest1_LPOS_ToF02_S1W08Assay Study
Sample

100 TRUE 18/01/2018
03:10:00

4 1

LTR UnitTest1_LPOS_ToF02_S1W11_LTRPrecision
Reference

External
Reference

100 TRUE 18/01/2018
03:25:00

5 1

SR UnitTest1_LPOS_ToF02_S1W12_SRPrecision
Reference

Study
Pool

100 TRUE 18/01/2018
03:40:00

6 1

Sam-
ple
3

UnitTest1_LPOS_ToF02_S1W09_xAssay Study
Sample

100 FALSE 18/01/2018
03:56:00

7 1

Blank
1

UnitTest1_LPOS_ToF02_Blank01Assay Proce-
dural
Blank

0 TRUE 18/01/2018
04:11:00

8 1

6.2 Analytical Parameter Extraction

With the nPYc-Toolbox it is also possible to extract parameters directly from raw data files (currently for Bruker and
Waters .RAW data only) and match to the imported dataset using:

dataset.addSampleInfo(descriptionFormat='Raw Data', filePath='path to raw data')

This links to the underlying extractParams() method.

extractParams contains several utility functions to read analytical parameters from raw data files.

nPYc.utilities.extractParams.extractParams(filepath, filetype, pdata=1, whichFiles=None)
Extract analytical parameters from raw data files for Bruker, Waters .RAW data and .mzML only. :param
filepath: Look for data in all the directories under this location. :type searchDirectory: string :param filetype:
Search for this type of data :type filetype: string :param int pdata: pdata folder for Bruker data :param list
whichFiles: If a list of files is provided, only the files in it will be parsed :return: Analytical parameters, indexed
by file name. :rtype: pandas.Dataframe

6.2. Analytical Parameter Extraction 47

nPYc Toolbox Documentation, Release 1.2.6

48 Chapter 6. Sample Metadata

CHAPTER 7

Sample and Feature Masks

Dataset objects contain two internal mask vectors, the sampleMask and the featureMask. They store whether
a sample or feature, respectively, should be used when calculating QC metrics, in the visualisations in the report
functions and when exporting the dataset.

There are several functions that modify these internal masks:

• updateMasks() is a method to automatically mask certain samples and/or features, for example, by type or
based on dataset specific quality control checks

• excludeSamples() and excludeFeatures() are methods to directly exclude specific samples or fea-
tures respectively. Masked samples and features will remain in the dataset, but will be hidden, and thus ignored
when calling the reporting functions, fitting PCA models, and exporting the pre-processed datasets.

• initialiseMasks() is a method to reset the masks to include all samples/features.

• applyMasks() is a method to permanently exclude from the dataset all samples and features which have been
previously masked. After calling this command the excluded features are deleted and the masks are re-initialised
so that all remaining samples and features are unmasked. This method should be used only when it is absolutely
certain that the masked features and samples are to be removed, as it is permanent so if samples/features were
again required, the full dataset would have to be re-imported.

Further details of each of these methods are given below, and full worked examples of how these are used during the
import and preprocessing of specific datasets are provided in Tutorials.

In brief, however, the following describes a step-wise example utilising the above functions to gener-
ate a feature filtered LC-MS dataset containing only Study Samples, with a specific sample (‘PipelineTest-
ing_RPOS_ToF10_U1W04’) excluded:

To automatically mask features not passing quality control criteria
msData.updateMasks(filterFeatures=True, filterSamples=False)

To reset (initialise) the masks, and run with an updated RSD threshold
msData.initialiseMasks()
dataset.Attributes['rsdThreshold'] = 20
msData.updateMasks(filterFeatures=True, filterSamples=False)

(continues on next page)

49

nPYc Toolbox Documentation, Release 1.2.6

(continued from previous page)

To automatically mask all sample types except for study samples
msData.updateMasks(filterSamples=True, sampleTypes=[SampleType.StudySample],
→˓assayRoles=[AssayRole.Assay], filterFeatures=False)

To exclude a specific sample, 'PipelineTesting_RPOS_ToF10_U1W04', by 'Sample File
→˓Name'
msData.excludeSamples(['PipelineTesting_RPOS_ToF10_U1W04'], on='Sample File Name',
→˓message='User excluded')

To finally apply the masks and permanently exclude the masked samples and features
msData.applyMasks()

7.1 Using updateMasks

updateMasks() is a method to automatically mask certain samples and/or features, for example, by type or based
on dataset specific quality control checks. There are a number of different ways in which the ‘updateMasks’ function
can be used, some of which are dataset type specific, common usage includes:

Using updateMasks to mask samples based on sample type (all dataset types)

By default, all samples are included in the datasets. However, it is often the case that some sample types (see Recom-
mended Study Design Elements) would not be required in the final dataset, or when running various quality control
checks.

By setting preferences with the “sampleTypes” and “assayRoles” arguments, samples which are not required can also
be masked (see :doc:enumerations for possible options). For example, the dataset would be masked to contain only
study samples (‘SampleType.StudySample, AssayRole.Assay’) and study reference samples (‘SampleType.StudyPool,
AssayRole.PrecisionReference’) by running the following:

dataset.updateMasks(filterSamples=True, sampleTypes=[SampleType.StudySample,
→˓SampleType.StudyPool], assayRoles=[AssayRole.Assay, AssayRole.PrecisionReference],
→˓filterFeatures=False)

Using updateMasks to mask samples failing quality control checks (NMR datasets only)

For NMR datasets, there are a number of quality control criteria (Dona et al1) which are automatically checked (see
Feature Summary Report: NMR Datasets for full details):

• Chemical shift calibration

• Line width

• Baseline consistency

• Quality of solvent suppression

For each of the above, default acceptable values are given in Built-in Configuration SOPs, samples not meeting these
criteria can be automatically masked by applying “sampleQCChecks” when applying updateMasks, for example:

To mask all samples failing on any quality control parameter, "sampleQCChecks"
→˓would be set to:
nmrData.updateMasks(filterSamples=True, sampleQCChecks=['CalibrationFail',
→˓'LineWidthFail', 'BaselineFail', 'SolventPeakFail'], filterFeatures=False)

(continues on next page)

1 Anthony C Dona, Beatriz Jiménez, Hartmut Schäfer, Eberhard Humpfer, Manfred Spraul, Matthew R Lewis, Jake TM Pearce, Elaine Holmes,
John C Lindon and Jeremy K Nicholson. Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-
Scale Metabolic Phenotyping. Analytical Chemistry, 86(19):9887-9894, 2014. URL: http://dx.doi.org/10.1021/ac5025039

50 Chapter 7. Sample and Feature Masks

http://dx.doi.org/10.1021/ac5025039

nPYc Toolbox Documentation, Release 1.2.6

(continued from previous page)

If only samples failing on Line Width criteria were required to be masked,
→˓"sampleQCChecks" would be set to:
nmrData.updateMasks(filterSamples=True, sampleQCChecks=['LineWidthFail'],
→˓filterFeatures=False)

Using updateMasks to mask feature failing quality control checks (MS datasets only)

For LC-MS datasets, features should be filtered based on their individual precision and accuracy (Lewis et al2) in the
nPYc-Toolbox the default parameters for feature filtering are as follows:

Table 1: LC-MS Feature Filtering Criteria
Criteria In Default

Value
Assesses

Correlation to dilution Serial Dilution Sample > 0.7 Intensity responds to changes in abundance
(accuracy)

Relative Standard Devia-
tion (RSD)

Study Reference < 30 Analytical stability (precision)

RSD in SS * default value >
RSD in SR

Study Sample and Study
Reference

1.1 Variation in SS should always be greater
than variation in SR

The distribution of correlation to dilution, and RSD can be visualised in the Feature Summary Report (see Quality
Assessment Reports for more details).

A report summarising number of features passing selection with different criteria can also be produced using:

nPYc.reports.generateReport(dataset, 'feature selection')

This generates a list of the number of features passing each filtering criteria, alongside a heatmap showing the number
of features resulting from applying different RSD and correlation to dilution thresholds.

Fig. 1: Heatmap of the number of features passing selection with different Residual Standard Deviation (RSD) and
correlation to dilution thresholds

Criteria can be modified if required, for example for the RSD threshold using:

dataset.Attributes['rsdThreshold'] = 20

Features failing selection can be automatically flagged for removal using:

dataset.updateMasks(filterSamples=False, filterFeatures=True)

Using updateMasks to mask unwanted/uninformative features (NMR datasets only)

For NMR datasets, feature filtering typically takes the form of removing one or more sections of the spectra known to
contain unwanted or un-informative signals.

The regions typically removed are pre-defined in the Configuration Files, and can be automatically flagged for removal:
2 Matthew R Lewis, Jake TM Pearce, Konstantina Spagou, Martin Green, Anthony C Dona, Ada HY Yuen, Mark David, David J Berry,

Katie Chappell, Verena Horneffer-van der Sluis, Rachel Shaw, Simon Lovestone, Paul Elliott, John Shockcor, John C Lindon, Olivier Cloarec,
Zoltan Takats, Elaine Holmes and Jeremy K Nicholson. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS
for Precision Large Scale Urinary Metabolic Phenotyping. Analytical Chemistry, 88(18):9004-9013, 2016. URL: http://dx.doi.org/10.1021/acs.
analchem.6b01481

7.1. Using updateMasks 51

http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/acs.analchem.6b01481

nPYc Toolbox Documentation, Release 1.2.6

nmrData.updateMasks(filterSamples=False, filterFeatures=True)

Additional regions can also be masked by using ‘updateMasks’ with the additional “exclusionRegions” parameter. For
example, to also mask the region between 8.4 and 8.5 ppm the following would be run:

nmrData.updateMasks(filterSamples=False, filterFeatures=True, exclusionRegions=[(8.4,
→˓8.5)])

7.2 Using excludeSamples and excludeFeatures

The ‘updateMasks’ function works to mask samples or features not meeting specific criteria, in addition to
this, the nPYc-Toolbox also contains two additional methods to mask specific samples or features directly,
excludeSamples() and excludeFeatures() respectively.

These functions both take three input arguments:

1. A list of sample or feature identifiers

2. “on”: the name of the column in ‘sampleMetadata’ (for ‘excludeSamples’) or ‘featureMetadata’ (for ‘exclude-
Features’) where these identifiers can be found

3. “message”: an optional message as to why these samples or features have been flagged for masking

Depending on the dataset type, and the sample and feature metadata available, the value of “on” could differ, but some
examples include:

To exclude a sample with 'Sample File Name' = 'DEVSET U 1D NMR raw data files/930'
nmrData.excludeSamples(['DEVSET U 1D NMR raw data files/930'], on='Sample File Name',
→˓message='Unknown type')

To exclude all features with 'ppm' > 8
nmrData.excludeFeatures([nmrData.featureMetadata['ppm'][nmrData.featureMetadata['ppm
→˓'] > 8].values], on='ppm', message='ppm > 8')

To exclude a sample with 'Run Order' = 93:
msDatacorrected.excludeSamples([93], on='Run Order', message='outlying TIC')

7.3 Using applyMasks and initialiseMasks

Once satisfied with the sample and feature masks, exclusions can be applied (permanently removed from the dataset)
using the applyMasks() function:

msDatacorrected.applyMasks()

This method should be used only when it is absolutely certain that the masked features and samples are to be removed,
as the full dataset would otherwise have to be re-imported.

Before masks have been applied, however, feature/sample masking can be reset to include all samples/features using
initialiseMasks():

msDatacorrected.initialiseMasks()

52 Chapter 7. Sample and Feature Masks

CHAPTER 8

Quality Assessment Reports

The nPYc-Toolbox offers a series of reports, pre-set visualisations comprised of text, figures and tables to describe and
summarise the characteristics of the dataset, and help the user assess the overall impact of quality control decisions
(e.g. whether to exclude samples or features or change filtering criteria).

The main reporting functions include:

• Sample Summary: Presents a summary of the samples acquired, see below for details

• Feature Summary: Summarises the main properties of the dataset and method specific quality control metrics,
see below for details

• Multivariate Report: Summarises the main outputs of a PCA model and any potential associations with pertinent
analytical metadata, see Multivariate Analysis for full details

• Final Report: Summary report compiling information about the samples acquired, and the overall quality of the
dataset

• Batch and Run-Order Correction: Specific reports for optimising and assessing correction in MSDataset, see
Batch & Run-Order Correction for full details

• Feature Selection: specific report for assessing the number of features passing quality criteria in MSDataset,
see Sample and Feature Masks for full details

By default, reports are generated inline (i.e. in a Jupyter notebook), using generateReport(). However reports
can also be saved as html documents with static images by supplying a destination path, for example:

saveDir = '/path to save outputs'
nPYc.reports.generateReport(dataset, 'feature summary', destinationPath=saveDir)

The html versions of the reports use Jinja2 templates, default reports are saved in the Templates directory, and may be
customised if required.

By default, reports are generated on the full sample and feature complement of each dataset, however, reports can also
be generated on only those samples and features not set to be masked from the dataset (i.e. with sampleMask and
featureMask values set to True, see Sample and Feature Masks), by running with withExclusions=True for example:

53

nPYc Toolbox Documentation, Release 1.2.6

nPYc.reports.generateReport(dataset, 'feature summary', withExclusions=True)

In this way, samples and features can be iteratively masked/included, and the impact of masking visualised before the
masks are finally applied and samples and/or features permanently excluded from the dataset.

Throughout the reports, we reference the various QC sample types included in every dataset to enable the characteri-
sation of data quality, see Sample Metadata for full details.

8.1 Sample Summary Report

The sample summary report can be used to check the expected samples against those acquired, in terms of numbers,
sample type, and any samples either missing from acquisition or not recorded in the sample metadata CSV file:

nPYc.reports.generateReport(msData, 'sample summary')

The main underlying function parameters are as follows:

class nPYc.reports._generateSampleReport
Summarise samples in the dataset.

Generate sample summary report, lists samples acquired, plus if possible, those missing as based on the expected
sample manifest.

Parameters

• dataTrue (Dataset) – Dataset to report on

• withExclusions (bool) – If True, only report on features and samples not masked
by the sample and feature masks

• destinationPath (None or str) – If None, run interactivly, else a str specifying
the directory to save report into

• returnOutput (bool) – If True, returns a dictionary of all tables generated during
run

Returns Optional, dictionary of all tables generated during run

8.2 Feature Summary Report: LC-MS Datasets

The LC-MS feature summary report provides visualisations summarising the quality of the dataset with regards to
quality control criteria previously described in Lewis et al1 and can be run using:

nPYc.reports.generateReport(msData, 'feature summary')

The visualisations include both assessment of potential run-order and batch effects, and metrics by which feature
quality can be assessed, in order, these consist of:

• Feature abundance (Figure 1)

• Sum of total ion count, TIC (Figures 2 and 3)

1 Matthew R Lewis, Jake TM Pearce, Konstantina Spagou, Martin Green, Anthony C Dona, Ada HY Yuen, Mark David, David J Berry,
Katie Chappell, Verena Horneffer-van der Sluis, Rachel Shaw, Simon Lovestone, Paul Elliott, John Shockcor, John C Lindon, Olivier Cloarec,
Zoltan Takats, Elaine Holmes and Jeremy K Nicholson. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS
for Precision Large Scale Urinary Metabolic Phenotyping. Analytical Chemistry, 88(18):9004-9013, 2016. URL: http://dx.doi.org/10.1021/acs.
analchem.6b01481

54 Chapter 8. Quality Assessment Reports

http://dx.doi.org/10.1021/acs.analchem.6b01481
http://dx.doi.org/10.1021/acs.analchem.6b01481

nPYc Toolbox Documentation, Release 1.2.6

• Correlation to dilution (Figures 4, 5 and 7)

• Residual standard deviation, RSD (Figures 6, 7 and 9)

• Chromatographic peak width, if available (Figure 8)

• Ion map (Figure 10)

For several of these parameters (for example, correlation to dilution, RSD), acceptable default values are pre-defined
in the configuration SOP, see Built-in Configuration SOPs for details. If different values are required, these can be set
by the user either by modifying the SOP, or during data import, or directly at any point during running the pipeline.
For more information, see Datasets and for examples, Installation and Tutorials.

The following sections describe how the quality for each of these is assessed.

Feature abundance

The histogram of feature abundance shows the distribution of mean abundance by sample type for each feature (Figure
1).

Fig. 1: Figure 1: Feature intensity histogram for all samples and all features in dataset (by sample type).

While a normal distribution is expected for the SS and SR samples, if your study includes LTR samples (QC samples
from a different source to the study) it can be the case that a subset of features are not present in these samples. If this
is the case, and it is required to limit the feature set to those detected in your LTR samples, features not found in this set
could be excluded based on their intensity (see Sample and Feature Masks for details). If an unexpected distribution
is observed this should be investigated, for example, by going back to XCMS feature extraction parameters.

Sum of total ion count, TIC

The TIC plot shows the summed intensity of all feature integrals for each sample (Figure 2) and provides insight into
potential run-order and batch effects.

Fig. 2: Figure 2: Sample Total Ion Count (TIC) and distribution (coloured by sample type).

By plotting the TIC for each sample (ordered by acquisition date) any broad trends in overall sample intensity can be
observed. With LC-MS it is usual to see a gradual decline in TIC across the run owing to increasing inefficiencies in
ion detection (from source and ion optic contamination), alongside large jumps if data is acquired in multiple batches,
both of which can be mitigated (at least in part) by run-order and batch correction (see Batch & Run-Order Correction).

With our instrumental set-up (recent generation Waters QToF instruments), we implement an automatic gain control
(see Lewis et al1). Briefly, throughout each experiment, the voltage applied to the MS detector is automatically
adjusted to compensate for trends in instrument performance, which, especially when the increments in applied voltage
are large, has a noticeable effect on the total ion count (TIC) of the sample. Although with our current set-up changes
in detector voltage are capped and thus this is minimised, this was not always (and may not always be) the case.
Therefore, an additional figure of TIC coloured by detector voltage is provided (see Figure 3 in tutorial).

Correlation to dilution

Correlation to dilution is one metric by which feature quality can be determined. By inclusion of a dilution series
(Serial Dilution Sample, SRD) the correlation to dilution for each feature can be calculated. A histogram of the
resulting values shows the distribution of correlation to dilution (Figure 4) and a TIC plot for the SRD samples can be
used to assess the overall behaviour of the dilution series (Figure 5).

A high quality dataset should contain only features that can be shown to be measured accurately with respect to the
true intensity, i.e. to scale with dilution. During feature filtering, a threshold in correlation to dilution (default value
0.7) is used to exclude all features which do not respond to dilution (see Sample and Feature Masks for details). Figure
4 shows the distribution in correlation to dilution segmented by mean feature intensity. If the distribution in correlation

8.2. Feature Summary Report: LC-MS Datasets 55

nPYc Toolbox Documentation, Release 1.2.6

to dilution values is not highly skewed to high values (especially for high and medium intensity features), the reason
for this needs investigating.

Fig. 3: Figure 4: Histogram of pearson correlation of features to serial dilution, segmented by percentile.

The first thing to check in this case is that the overall trend in TIC for the dilution series samples corresponds to the
expected dilution as defined in the ‘Basic CSV’ file (see CSV template for metadata import), this is shown in Figure
5. Any outliers (for example, mis-injections) can be excluded, which may have a substantial impact on the resulting
correlation values.

Fig. 4: Figure 5: TIC of serial dilution (SRD) samples coloured by sample dilution.

If a large number of SRD samples are not scaling with dilution, and the distribution in correlation values is poor, the
cause of this should be investigated across all stages, from acquisition, through conversion and peak detection.

Residual standard deviation, RSD

Another key metric by which feature quality can be assessed is that of residual standard deviation (Relative Standard
Deviation, RSD). By inclusion of precision reference samples (Study Reference, SR) or Long-Term Reference, LTR)
the RSD for each feature can be calculated. A histogram of the resulting values shows the distribution of RSD in the
SR samples (Figure 6) and a plot of the RSD for each feature by sample type (Figure 9) allows comparison of the
variation observed between QC and study samples.

A high quality dataset should contain only features that can be shown to be measured precisely from multiple acqui-
sitions across the run (in this case this is provided by repeated injections of the pooled SR sample). During feature
filtering a threshold in RSD (default value 30) is used to exclude all features which cannot be measured precisely
across the run (see Sample and Feature Masks for details). Figure 6 shows the distribution in RSD segmented by mean
feature intensity. If the distribution is not skewed to low values (especially for high and medium intensity features),
the reason for this needs investigating.

Fig. 5: Figure 6: Histogram of Residual Standard Deviation (RSD) in study reference (SR) samples, segmented by
abundance percentiles.

The first thing to check is substantial run-order and batch trends (Figure 2), if these are present, the RSD in the SR
samples will be skewed to higher values, and batch and run-order correction should be first applied. Additionally,
outlying SR samples can cause inflation to the RSD, if a small number of SR samples demonstrate an unusual TIC
(which is not shown by surrounding SS samples) these should be excluded before RSD is calculated.

In addition to the requirement that features are measured precisely, the variance observed in the study samples, should
exceed that measured in the SR samples, with the expectation that biological variance should exceed analytical vari-
ance. The plot comparing the RSD measured in the different sample classes (study reference sample, study samples
etc.) provides insight into variance structures in the dataset (Figure 9).

Finally, to assess the main feature quality metrics together a plot of RSD vs. correlation is provided (see Figure 7 in
tutorial).

Chromatographic peak width

If available, a histogram is plotted of chromatographic peak width (if available, Figure 8).

Narrower peaks mean better chromatographic resolution, while broadening in peak width (when compared with pre-
vious runs) imply indicate potential aging of the column, which may need replacing.

Ion map

The ion map visualises the location of the detected features in the m/z and retention time space of the assay (Figure
10).

56 Chapter 8. Quality Assessment Reports

nPYc Toolbox Documentation, Release 1.2.6

Fig. 6: Figure 9: RSD distribution for all samples and all features in dataset (by sample type).

Fig. 7: Figure 10: Ion map of all features (coloured by log median intensity).

This plot can be used to assess potential feature exclusion ranges. For example, where the retention time is outside the
useful range of the assay, or presence of signals resulting from polymer contamination.

8.3 Feature Summary Report: NMR Datasets

The NMR feature summary report provides visualisations summarising the quality of the dataset with regards to quality
control criteria previously described in Dona et al2 and can be run using:

nPYc.reports.generateReport(nmrData, 'feature summary')

The visualisations include various metrics by which dataset quality can be assessed, in order, these consist of:

• Chemical shift calibration (Figure 1)

• Line width (Figures 2 and 3)

• Baseline consistency (Figure 4)

• Quality of solvent suppression (Figure 5)

For several of these parameters (for example, line width), acceptable default values are pre-defined in the configuration
SOP, see Built-in Configuration SOPs for details. If different values are required, these can be set by the user either by
modifying the SOP, or during data import, or directly at any point during running the pipeline. For more information,
see Datasets and for examples, Installation and Tutorials.

Any samples failing any of the above criteria are flagged, but in the appropriate plots, and in the table at the end of the
report.

The following sections describe how the quality for each of these is assessed.

Chemical shift calibration

Variations in sample temperature between acquisitions can result in minor deviations in the chemical shift scale be-
tween spectra. To correct these shifts, the toolbox uses an adaptation of the technique published in Pearce et al3.

Subsequently, the chemical shift calibration algorithm detects deviation from the expected delta ppm and flags those
samples outside of the empirical 95% bound as estimated from the whole dataset (Figure 1).

Fig. 8: Figure 1: Distribution of all samples after chemical shift calibration (5-95% with outliers flagged).

If spectra are failing calibration, firstly the presence of the target resonance should be checked, and if required, a
different peak target can be defined as described above.

Line width
2 Anthony C Dona, Beatriz Jiménez, Hartmut Schäfer, Eberhard Humpfer, Manfred Spraul, Matthew R Lewis, Jake TM Pearce, Elaine Holmes,

John C Lindon and Jeremy K Nicholson. Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-
Scale Metabolic Phenotyping. Analytical Chemistry, 86(19):9887-9894, 2014. URL: http://dx.doi.org/10.1021/ac5025039

3 Jake TM Pearce, Toby J Athersuch, Timothy MD Ebbels, John C Lindon, Jeremy K Nicholson and Hector C Keun. Robust Algorithms
for Automated Chemical Shift Calibration of 1D 1H NMR Spectra of Blood Serum. Analytical Chemistry, 80(18):7158-62, 2008. URL: http:
//dx.doi.org/10.1021/ac8011494

8.3. Feature Summary Report: NMR Datasets 57

http://dx.doi.org/10.1021/ac5025039
http://dx.doi.org/10.1021/ac8011494
http://dx.doi.org/10.1021/ac8011494

nPYc Toolbox Documentation, Release 1.2.6

Spectral line-width is calculated by fitting a pseudo-voigt line shape to a pre-specified signal on the native-resolution
Fourier-transformed spectrum at import, using the lmfit module (4) to optimise the fit.

In the default configuration of the toolbox, line-width is calculated by fitting the TSP singlet at (ppm=0) in urine
spectra, and the lactate quartet at (ppm=4.11) in serum or plasma.

A box plot of the calculated line width values coloured by sample type is plotted in Figure 2.

Fig. 9: Figure 2: Boxplot of line width values (coloured by sample type).

Any samples with values above the line width threshold (here set to 0.8 as above), are also plotted (Figure 3)

Fig. 10: Figure 3: Distribution of all samples around peak on which line width calculated (5-95% with outliers
flagged).

Depending on the number of samples failing the line width checks, either individual samples may be re-run, or, if
necessary, the acquisition parameters adjusted by the spectroscopist.

Baseline consistency

Baseline consistency is calculated based on two regions at either end of the spectrum expected to contain only elec-
tronic noise. For these regions the 5% and 95% percentile bounds in intensity are calculated using all the points in all
the spectra. For each individual spectrum, if more than 95% of the intensity points fall outside of these bounds the
sample is flagged for review (Figure 4).

Fig. 11: Figure 4: Distribution of all samples at baseline regions (5-95% with outliers flagged).

The phasing of spectra flagged for review should first be checked, and adjusted if applicable. If a larger number
of samples in the dataset fail the spectrometer acquisition parameters (such as receiver gain settings) and sample
preparation (such as dilution) should be revised.

Quality of solvent suppression

The solvent suppression quality control is performed by applying the same method as above to the regions flanking
either side of the residual solvent peak (Figure 5).

This test normally flags very dilute samples for which it might be difficult to obtain a high quality spectrum without
adjusting the sample preparation. However, for these spectra, re-acquisition with more manual adjustment of the
solvent suppression parameters may substantially improve the data.

8.4 Feature Summary Report: NMR Targeted Datasets

The feature summary report provides visualisations summarising the quality and distribution of values across samples
for each individual feature. This report can be obtained by running:

nPYc.reports.generateReport(TargetedData, 'feature summary')

In order, for an NMR targeted dataset these consist of:

• Summary of quantification parameters (Table 1)

4 Matt Newville, Renee Otten, Andrew Nelson, Antonino Ingargiola, Till Stensitzki, Dan Allan, Austin Fox, Michał, Glenn, Yoav Ram, Mer-
linSmiles, Li Li, Christoph Deil, Stuermer, Alexandre Beelen, Oliver Frost, gpasquev, Allan L. R. Hansen, Alexander Stark, Tim Spillane, Shane
Caldwell, Anthony Polloreno, Nicholas Earl, colgan, Robbie Clarken, Kostis Anagnostopoulos, Jose Borreguero, deep-42-thought, Ben Gamari and
Anthony Almarza. lmfit. 2018. URL: https://doi.org/10.5281/zenodo.1249416

58 Chapter 8. Quality Assessment Reports

https://doi.org/10.5281/zenodo.1249416

nPYc Toolbox Documentation, Release 1.2.6

Fig. 12: Figure 5: Distribution of all samples at region surrounding solvent suppression peak (5-95% with outliers
flagged).

• Residual standard deviation, RSD (Figure 2, Table 2)

• Feature distributions (Figure 3)

Summary of quantification parameters

The initial set of tables in the targeted feature summary report summarise information about each of the quantified
features (including quantification parameters and reference ranges if available). The first table gives overall results,
and in subsequent tables the features and results are broken down by the quantification type.

Depending on the data generation process, the confidence in quantified values can vary greatly, ranging from semi-
quantitative measurements (where area is reported but not concentration) to quantitative values (where absolute con-
centrations are reported) (Broadhurst et al5).

The QuantificationType field describes the rigour of the quantification of each compound, see class
nPYc.enumerations.QuantificationType for all available options. In Bruker NMR Targeted methods, compounds are
quantified using a quantitative method that does not rely on internal standards, therefore ‘QuantOther’ is the recorded
value.

Similarly, as a variety of calibration methods can be employed, the CalibrationMethod defines how
the calibration curve and spiked standards interact to establish a quantitative measurement, see class
nPYc.enumerations.CalibrationMethod for all available options. In Bruker NMR Targeted methods, a quantitative
approach that does not rely on calibration curves and internal standard is utilised, therefore ‘otherCalibration’ is the
recorded value.

For a given analytical platform, each compound will have a range at which its concentration can be satisfactorily
determined; outside of which range the reported value could substantially differ from the true sample concentration
(Synovec et al6). The definition of what is “satisfactory” and how this range (sometimes called linear range) is
determined is specific to the analytical platform and common guidelines set by the community and regulatory agencies
(Lee et al7).

Depending on the quantification method employed, there are several different quantification measures that may be
reported. The LLOQ (lowest limit of quantification) and ULOQ (upper limit of quantification) are the lowest and
highest concentration values respectively between which quantitative results can be obtained with a specific degree
of confidence. When reporting quantitative data, current convention impose to report values inferior to the LLOQ as
“<LLOQ” and values superior to the ULOQ as “>ULOQ”. Data extrapolated outside of these limits are typically not
reported in published results as they do not satisfy a predefined degree of confidence

Alternatively, limits of detection (LOD) are sometimes reported, as is the case for the Bruker NMR Targeted outputs.

Residual standard deviation, RSD

As for the MS profiling datasets, for targeted datasets Relative Standard Deviation can be calculated for each feature,
and on each sample type (Figure 2, Table 2).

Fig. 13: Figure 2: Distribution of values for each feature per sample type.

5 David Broadhurst, Royston Goodacre, Stacey N Reinke, Julia Kuligowski, Ian D Wilson, Matthew R Lewis and Warwick B Dunn. Guide-
lines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical
metabolomic studies. Metabolomics, 14(6):72, 2018. URL: https://doi.org/10.1007/s11306-018-1367-3

6 Synovec, Robert E and Yeung, Edward S. Improvement of the Limit of Detection in Chromatography by an Integration Method. Analytical
Chemistry, 57(12):2162-2167, 1985. URL: https://doi.org/10.1021/ac00289a001

7 Jean W Lee, Viswanath Devanarayan, Yu Chen Barrett, Russell Weiner, John Allinson, Scott Fountain, Stephen Keller, Ira Weinryb, Marie
Green, Larry Duan, James A Rogers, Robert Millham, Peter J O’Brien, Jeff Sailstad, Masood Khan, Chad Ray and John A Wagner. Fit-for-
purpose method development and validation for successful biomarker measurement. Pharmaceutical Research, 23(2):312-28, 2006. URL: http:
//dx.doi.org/10.1007/s11095-005-9045-3

8.4. Feature Summary Report: NMR Targeted Datasets 59

https://doi.org/10.1007/s11306-018-1367-3
https://doi.org/10.1021/ac00289a001
http://dx.doi.org/10.1007/s11095-005-9045-3
http://dx.doi.org/10.1007/s11095-005-9045-3

nPYc Toolbox Documentation, Release 1.2.6

Figure 2 allows a comparative visualization of the RSD per feature across each Sample Type.

A high quality dataset should contain only features that can be shown to be measured precisely from multiple acqui-
sitions across the run (in this case this is provided by repeated injections of the pooled SR sample). Subsequently, at
the feature filtering stage a threshold in RSD (default value 30) is used to exclude all features that cannot be measured
precisely across the run.

From both Figure 2 and Table 2 it can be seen that for this dataset there are many features with zero values across all
samples (and thus also an RSD of zero), these features can also be removed from the dataset if required.

Feature distributions

Finally, violin plots giving the distribution in intensity for each measured feature and for each sample type are shown
in Figure 3.

Fig. 14: Figure 3: Distribution of values for each feature per sample type.

These can also be used to identify features with a very high proportion of zeros or values outside the limits of quan-
tification.

8.5 Dataset Specific Reporting Syntax and Parameters

The main function parameters (which may be of interest to advanced users) are as follows:

class nPYc.reports._generateReportMS
Summarise different aspects of an MS dataset

Generate reports for feature summary, correlation to dilution, batch correction
assessment, batch correction summary, feature selection, final report, final
report abridged, or final report targeted abridged

• ‘feature summary’ Generates feature summary report, plots figures including those for feature abun-
dance, sample TIC and acquisition structure, correlation to dilution, RSD and an ion map.

• ‘correlation to dilution’ Generates a more detailed report on correlation to dilution, broken down by
batch subset with TIC, detector voltage, a summary, and heatmap indicating potential saturation or other
issues.

• ‘batch correction assessment’ Generates a report before batch correction showing TIC overall and in-
tensity and batch correction fit for a subset of features, to aid specification of batch start and end points.

• ‘batch correction summary’ Generates a report post batch correction with pertinant figures (TIC, RSD
etc.) before and after.

• ‘feature selection’ Generates a summary of the number of features passing feature selection (with current
settings as definite in the SOP), and a heatmap showing how this number would be affected by changes to
RSD and correlation to dilution thresholds.

• ‘final report’ Generates a summary of the final dataset, lists sample numbers present, a selection of
figures summarising dataset quality, and a final list of samples missing from acquisition.

• ‘final report abridged’ Generates an abridged summary of the final dataset, lists sample numbers present,
a selection of figures summarising dataset quality, and a final list of samples missing from acquisition.

• ‘final report targeted abridged’ Generates an abridged summary of the final targeted (peakPantheR)
dataset, lists sample numbers present, a selection of figures summarising dataset quality, feature distribu-
tions, and a final list of samples missing from acquisition.

60 Chapter 8. Quality Assessment Reports

nPYc Toolbox Documentation, Release 1.2.6

Parameters

• msDataTrue (MSDataset) – MSDataset to report on

• reportType (str) – Type of report to generate, one of feature summary,
correlation to dilution, batch correction, feature selection,
final report, final report abridged, or final report targeted
abridged

• withExclusions (bool) – If True, only report on features and samples not masked
by the sample and feature masks

• or bool withArtifactualFiltering (None) – If None use the value from
Attributes['artifactualFilter']. If True apply artifactual filtering to the
feature selection report and final report

• destinationPath (None or str) – If None plot interactively, otherwise save
report to the path specified

• msDataCorrected (MSDataset) – Only if batch correction, if msDataCor-
rected included will generate report post correction

• pcaModel (PCAmodel) – Only if final report, if PCAmodel object is available
PCA scores plots coloured by sample type will be added to report

class nPYc.reports._generateReportNMR
Generate reports on NMRdataset objects, possible options are: feature summary or final report

• ‘feature summary’ Generates feature summary report/ QC summary report, plots figures including those
for feature calibration check against glucose or TSP, linewidth box plot and baseline/water peak plots.

• ‘final report’ Generates a summary of the final dataset, lists sample numbers present, a selection of
figures summarising dataset quality, and a final list of samples missing from acquisition.

Parameters

• nmrData (NMRDataset) – NMRDataset to report on

• reportType (str) – Type of report to generate, one of feature summary, or
final report

• withExclusions (bool) – If True, only report on features and samples not masked
by the sample and feature masks

• destinationPath (None or str) – If None plot interactively, otherwise save
report to the path specified

class nPYc.reports._generateReportTargeted
Summarise different aspects of a Targeted Dataset

Generate reports for feature summary, merge LOQ assessment or final report

• ‘feature summary’ Generates feature summary report, . . .

• ‘merge loq assessment’ Generates a report before mergeLimitsOfQuantification(), highlight-
ing the impact of updating limits of quantification across batch. List and plot limits of quantification that
are altered, number of samples impacted.

• ‘final report’ Generates a summary of the final dataset, lists sample numbers present, a selection of
figures summarising dataset quality, and a final list of samples missing from acquisition.

Parameters

8.5. Dataset Specific Reporting Syntax and Parameters 61

nPYc Toolbox Documentation, Release 1.2.6

• tDataIn (TargetedDataset) – TargetedDataset to report on

• reportType (str) – Type or report to generate, one of feature summary, merge
loq assessment or final report

• withExclusions (bool) – If True, only report on features and samples not masked
by sample and feature masks

• destinationPath (None or str) – If None plot interactively, otherwise save
report to the path specified

• numberPlotPerRowLOQ (int) – Only if merge loq assessment, the number
of subplots to place on each row

• numberPlotPerRowFeature (int) – Only if feature summary or final
report, the number of subplots to place on each row

• percentRange (None or float) – None or Float, percentage range for acceptable
accuracy [100 - percentRange, 100 + percentRange] and precision [0, percentRange]

• pcaModel (PCAmodel) – Only if final report, if PCAmodel object is available
PCA scores plots coloured by sample type will be added to report

Raises

• ValueError – If ‘tData’ does not satisfy to BasicTargetedDataset definition

• ValueError – If ‘reportType’ is not feature summary, merge LOQ
assessment or final report

• TypeError – If ‘withExclusion’ is not a bool

• TypeError – If ‘destinationPath’ is not None or str

• TypeError – If ‘numberPlotPerRowLOQ’ is not int

• TypeError – If ‘numberPlotPerRowFeature’ is not int

• TypeError – If ‘percentRange’ is not None or float

62 Chapter 8. Quality Assessment Reports

CHAPTER 9

Batch & Run-Order Correction

The batchAndROCorrection module provides tools to detect and correct for per-feature run-order and batch
effects in MSDataset, by characterising the effect in reference samples and interpolating a correction factor to the
intermediate samples.

Fig. 1: TIC (Total Ion Count) plot showing the summed intensity of all feature integrals for each sample (coloured by
sample type) before batch and run-order correction.

Run-order and batch correction may be applied following an adapted version of the LOWESS approach proposed by
Dunn et al1.

Fig. 2: TIC (Total Ion Count) plot showing the summed intensity of all feature integrals for each sample (coloured by
sample type) after batch and run-order correction.

In brief, for each MS feature, a LOWESS estimator is fitted on the series of consecutive Study Reference samples for
each analytical batch (which can be defined by the user, see Sample Metadata). The value for that feature in each
sample is corrected by dividing the original intensity value by the interpolated value of the LOWESS curve at its
position in the run order (final intensity units are a ratio to intensity in the ”mean” Study Reference sample expressed
by the LOWESS curve). The window of the LOWESS smoother can be set by the user (default value=11), care should
be taken not to over-fit the run-order correction. Batch divergences are corrected by aligning median feature intensities
in the Study Reference samples between batches.

As batch and run-order correction is a critical step in preprocessing of LC-MS datasets, alongside further information
below, a full and detailed example is given in the LC-MS tutorial, see Installation and Tutorials.

1 Warwick B Dunn, David Broadhurst, Paul Begley, Eva Zelena, Sue Francis-McIntyre, Nadine Anderson, Marie Brown, Joshau D Knowles,
Antony Halsall, John N Haselden, Andrew W Nicholls, Ian D Wilson, Douglas B Kell, Royston Goodacre, and The Human Serum Metabolome
(HUSERMET) Consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatog-
raphy coupled to mass spectrometry. Nature Protocols, 6:1060 EP –, 06 2011. URL: http://dx.doi.org/10.1038/nprot.2011.335.

63

http://dx.doi.org/10.1038/nprot.2011.335

nPYc Toolbox Documentation, Release 1.2.6

9.1 Batch & Run-Order Correction Assessment

Batch & run-order correction performance can be assessed on a subset of features prior to running on the whole dataset
using the Batch Correction Assessment report:

nPYc.reports.generateReport(msData, 'batch correction assessment', batch_correction_
→˓window=11)

This report shows the LOESS fit for a number of features (default 10), and the results of applying such a fit.

Fig. 3: Example outcome of applying batch and run-order correction to one feature, plot shows an arrow for each
sample from the summed intensity (TIC) before to after batch correction, plus the LOESS fit.

By comparing the results across all surveyed features, the parameters for and necessity of correction can be assessed:

• Is the window of the LOWESS smoother appropriate? Check that only broad and not narrow trends are being
fitted, change batch_correction_window parameter if required.

• Does the correction need to be applied in different sub-batches? Check if there is a common and consistent jump
in intensity across all features, amend the sample batches if required.

• Do any SR samples need to be excluded? If you have a non-representative consecutive set of SR samples in
your dataset, they may need removing.

• Is batch correction required? Check if there is an observable trend in the batch and/or run-order, if not then
correction is not required!

Once these questions have been assessed, the appropriate parameters can be modified, or samples excluded, for full
details and a worked example see the LC-MS tutorial at Installation and Tutorials.

9.2 Running Batch & Run-Order Correction

Batch and run-order correction can be applied to a MSDataset using:

datasetCorrected = nPYc.batchAndROCorrection.correctMSdataset(dataset, window=11)

After running correction, the results can be assessed using the Batch Correction Summary report:

nPYc.reports.generateReport(dataset, 'batch correction summary',
→˓msDataCorrected=datasetCorrected)

The main function parameters (which may be of interest to advanced users) are as follows:

nPYc.batchAndROCorrection.correctMSdataset(data, window=11, method=’LOWESS’,
align=’median’, parallelise=True, exclude-
Failures=True)

Conduct run-order correction and batch alignment on the MSDataset instance data, returning a new instance
with corrected intensity values.

Sample are seperated into batches acording to the ‘Correction Batch’ column in data.sampleMetadata.

Parameters

• data (MSDataset) – MSDataset object with measurements to be corrected

• window (int) – When calculating trends, consider this many reference samples, centred
on the current position

64 Chapter 9. Batch & Run-Order Correction

nPYc Toolbox Documentation, Release 1.2.6

• method (str) – Correction method, one of ‘LOWESS’ (default), ‘SavitzkyGolay’ or
None for no correction

• align (str) – Average calculation of batch and feature intensity for correction, one of
‘median’ (default) or ‘mean’

• parallelise (bool) – If True, use multiple cores

• excludeFailures (bool) – If True, remove features where a correct fit could not
be calculated from the dataset

Returns Duplicate of data, with run-order correction applied

Return type MSDataset

9.2. Running Batch & Run-Order Correction 65

nPYc Toolbox Documentation, Release 1.2.6

66 Chapter 9. Batch & Run-Order Correction

CHAPTER 10

Multivariate Analysis

The nPYc-Toolbox provides the capacity to generate a PCA model of the data (via the pyChemometrics module),
and subsequently, to use this to assess data quality, identify potential sample and feature outliers, and determine any
potential analytical associations with the main sources of variance in the data.

10.1 PCA Model

A PCA model can be generated using exploratoryAnalysisPCA():

PCAmodel = nPYc.multivariate.exploratoryAnalysisPCA(dataset, scaling=1)

There are a number of parameters which can be optimised depending on the dataset.

One key parameter is ‘scaling’, which divides each column in the data matrix by its respective standard deviation
raised to a power of the scaling parameter. This parameter can range in value between 0 and 1, and recommended
values are 0 for mean-centering only, 0.5 for Pareto scaling and 1 for unit variance (UV) scaling. The outcome of PCA
model will vary based on the scaling method selected, and different scaling functions can be appropriate depending on
the data itself and the question being asked of the data (van der Berg et al1).

The default scaling is unit variance (scaling=1), which scales every variable to have a variance of one, and thus
all variables (despite their different magnitudes) become equally important in the model. For NMR, when smaller
variables are more likely to be background noise, it may be that mean-centering the data only (scaling=0) can be
appropriate.

Each model is cross-validated using 7-fold cross-validation and the recommended number of principal components is
automatically estimated based on two criteria, when either one of these is met no more components will be added and
the PCA model will be returned. There criteria are:

• minQ2: Q2 is the variance predicted by each component (from cross-validation), when adding a component
does not improve Q2 by at least this value (default minQ2=0.05) then no more components will be added.

1 Robert A van den Berg, Huub CJ Hoefsloot, Johan A Westerhuis, Age K Smilde and Mariët J van der Werf. Centering, scaling, and trans-
formations: improving the biological information content of metabolomics data. BMC Genomics, 8(7):142, 2006. URL: https://doi.org/10.1186/
1471-2164-7-142

67

https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142

nPYc Toolbox Documentation, Release 1.2.6

• maxComponents: this defines the maximum number of components (default maxComponents=10) returned by
the model (regardless of Q2 increases).

If different parameters are required these can be specified as additional input arguments, for example, to generate a
PCA model with a maximum of five components:

PCAmodel = nPYc.multivariate.exploratoryAnalysisPCA(dataset, scaling=1,
→˓maxComponents=5)

The main function parameters (which may be of interest to advanced users) are as follows:

nPYc.multivariate.exploratoryAnalysisPCA.exploratoryAnalysisPCA(npycDataset,
scaling=1,
maxCompo-
nents=10,
minQ2=0.05,
withExclu-
sions=False,
**kwargs)

Performs and exploratory analysis using PCA on the data contained in an Dataset.

Parameters

• npycDataset (Dataset) – Dataset to model

• scaling – Choice of scaling.

• maxComponents (int) – Maximum number of components to fit.

• minQ2 – Minimum % of improvement in Q2Y over the previous component to add .

• withExclusions (Boolean) – If True, PCA will be fitted on the npyc_dataset after
applying feature and sample Mask, if False the PCA is performed on whole dataset.

Returns Fitted PCA model

Return type ChemometricsPCA

10.2 Multivariate Analysis Report

The analytical multivariate report provides visualisations summarising the largest sources of variance in the dataset
(from a PCA model) with particular emphasis on any potential analytical sources, and can be generated using
multivariateReport():

nPYc.reports.multivariateReport(dataset, PCAmodel)

These consist of:

• Scree plot of variance (Figure 1)

• Scores plots coloured by sample type (Figure 2)

• Strong sample outliers (Figure 3)

• DmodX sample outliers (Figure 4)

• Loadings plots (Figure 5)

• Distribution of analytical parameters (Figure 6)

• Heatmap of potential associations between analytical parameters and the main sources of variance (Figures 7
and 8)

68 Chapter 10. Multivariate Analysis

nPYc Toolbox Documentation, Release 1.2.6

• Scores plots coloured by analytical parameters with potential association (Figures 9-11)

The following sections describe these in more detail:

Scree plot of variance

The scree plot (Figure 1) shows the percentage of variance (cumulative) both explained (R2) and predicted (Q2) by
each principal component in the model.

Fig. 1: Figure 1. PCA scree plot of variance explained by each component (cumulative).

This information can help to guide interpretation of the subsequent plots, for example, if separation is seen between
QC samples in a given component, this would be much more serious if this component explained 50% of the variance
than if the component only explained 3% of the variance.

If the variance is not predictable (negative or low Q2) this indicates that the model is not robust to different subsets of
samples being are removed. This could be for a number of reasons, but it implies that there are likely no key analytical
sources of variance, as these would inherently contribute throughout the run.

Scores plots coloured by sample type

The PCA scores represent the new location of the samples in each principal component. A typical way to look at
these is to plot the scores values in two dimensions, corresponding to pairs of components. Each point in a scores
plot therefore represents a sample, with samples close together being more similar to each other, and those further
apart being more dissimilar. By colouring by sample type (Figure 2), we can check, firstly, the consistency of the QC
samples (SR and LTR) i.e. that they are tightly clustered; and secondly, for the presence of any sample outliers (any
samples which are very different to the others).

Fig. 2: Figure 2. PCA scores plots coloured by sample type.

Outlying study samples in this plot are of interest (does this relate to biology, sample collection etc.), but not of
particular concern. However, any QC samples with unusual behaviour, or unusual clustering within QC samples,
should be checked. Further sections of the multivariate report can help to elucidate if this behaviour may result from
an analytical source (see below).

Strong sample outliers

Strong sample outliers are those which are very different from the others, these are seen as far outside the Hotelling’s
T ellipse (Figure 2) and with high values when you sum the total distance from origin across all components (Figure
3), these samples have high leverage and skew the model with their contribution to variance.

Fig. 3: Figure 3. Distribution in total distance from origin (scores space) by sample type.

Outliers in study samples are common, owing for example, to the presence of strong drug or dietary related signals.
If LTR samples are strong outliers this is not a concern, as they may have a significantly different composition to the
study samples, similarly SR samples may be overly weighted with very high concentration metabolites in one or more
study sample, so may also be located away from the origin.

It would be expected here for all LTR and all SR samples to have roughly the same total distance from origin (although
the two groups may be different from each other), as above, any deviation from this should be investigated.

DmodX sample outliers

DmodX (also called distance to model) is a measure of how well each sample fits the model itself. Unlike the strong
sample outliers, outliers in DmodX (Figure 4) do not skew the model, but are simply not well represented by the
model.

10.2. Multivariate Analysis Report 69

nPYc Toolbox Documentation, Release 1.2.6

Fig. 4: Figure 4. Distribution in distance from model (DmodX) by sample type.

The interpretation of the DmodX plot is exactly as for the strong sample outliers though, with any deviation from a
consistent value for all SR or LTR samples worthy of further investigation.

Loadings plots

The PCA loadings represent the weight of each original feature in forming the new PCA variables (scores). Thus there
is a set of loadings (with values corresponding to each original feature) for each component in the model. The loadings
can be plotted as for the scores, in pairs, however for improved interpretation here the loadings are plotted for each
component separately. For LC-MS data, this takes the form of an ion map with points coloured by the model loadings
(Figure 5A); for NMR data a standard (the median) spectrum, with each point coloured by it’s relative contribution to
that particular component (Figure 5B); and for targeted datasets points corresponding to each named feature (Figure
5C).

Fig. 5: Figure 5A. PCA loadings (LC-MS datasets).

Fig. 6: Figure 5B. PCA loadings (NMR datasets).

These plots are useful in showing the regions of the spectrum with the most variance, and, by comparison with the
scores plots (Figures 2 and 9-11) useful in determining any relationship to analytical sources (for example, variance in
QC samples or association with specific analytical parameters).

Distributions of analytical parameters

Distributions of the sample metadata (in this case relating to recorded analytical parameters) are plotted in Figure 6
(in this example for the DEVSET LC-MS dataset).

This allows the user to check if the behaviour of each parameter is as expected.

Heatmap of potential associations between analytical parameters and the main sources of variance

Potential associations between the principal components and any analytical parameters is tested by calculating either
the correlation (for continuous data) or a Kruskal-Wallis test (for categorical data) between each parameter and the
PCA scores for each component. The returned values are displayed in Figures 7 and 8, for continuous and categorical
data respectively.

These allow a quick assessment of whether any of the largest sources of variance in a dataset may have analytical
sources. By default, any significant associations (correlation > 0.3 or Kruskal-Wallis p-value < 0.05) are plotted (see
below), these default values can be amended by setting the “r_threshold” or “kw_threshold” when calling ‘multivari-
ateReport’.

Scores plots coloured by analytical parameters with potential association

Additionally for any fields where the correlation or p-value (respectively) exceed the threshold (default thresholds
r_threshold=0.3, kw_threshold=0.05) the PCA scores plots are generated with sample points coloured according to
their values for the flagged analytical parameter (in this case Run Order):

This allows quick identification and assessment of any analytical or pre-processing issues, and the subsequent action
required depends on the analytical parameter flagged, for example, in this case batch and run-order correction would
need to be applied, as there is a strong association with run order in PC3.

Further options

As for the main reports (see Quality Assessment Reports), there are a number of different options which can be
specified by the user if required, some examples of which include:

70 Chapter 10. Multivariate Analysis

nPYc Toolbox Documentation, Release 1.2.6

Fig. 7: Figure 5C. PCA loadings (Targeted datasets).

Fig. 8: Figure 6. Histograms of metadata distributions (plotted for fields with non-uniform values only).

To save as html documents with static images to a specified location ('saveDir'):
saveDir = '/path to save outputs'
nPYc.reports.multivariateReport(dataset, PCAmodel, destinationPath=saveDir)

To report on only those samples and features not set to be masked from the dataset,
→˓NOTE, PCAmodel must be generated with the same exlusion set:
PCAmodel = nPYc.multivariate.exploratoryAnalysisPCA(dataset, scaling=1,
→˓withExclusions=True)
nPYc.reports.multivariateReport(dataset, PCAmodel, withExclusions=True)

To plot scores plots coloured by any analytical parameter with a correlation
→˓exceeding 0.4 (default value=0.3, see Figure 9 above):
nPYc.reports.multivariateReport(dataset, PCAmodel, r_threshold=0.4)

Full function parameters (which may be of interest to advanced users) are as follows:

class nPYc.reports.multivariateReport
PCA based analysis of a dataset. A PCA model is generated for the data object, then potential associations
between the scores and any sample metadata determined by correlation (continuous data) or a Kruskal-Wallis
test (categorical data).

The multivariateReport has three options for the reportType argument:

• ‘analytical’ Reports on analytical qualities of the data only (as defined in the relevant SOP).

• ‘biological’ Reports on biological qualities of the data only (all columns in sampleMetadata except those
defined as analytical or skipped in the SOP).

• ‘all’ Reports on all qualities of the data (all columns in sampleMetadata except those defined as skipped
in the SOP).

Parameters

• dataTrue (Dataset) – Dataset to report on

• pcaModel (ChemometricsPCA) – PCA model object (scikit-learn based)

• reportType (str) – Type of sample metadata to report on, one of analytical,
biological or all

• withExclusions (bool) – If True, only report on features and samples not masked
by the sample and feature masks

• biologicalMeasurements (dict) – Dictionary of type of data contained in each
biological sampleMetadata field. Keys are sampleMetadata column names, and values
one of ‘categorical’, ‘continuous’, ‘date’

• dModX_criticalVal (None or float) – Samples with a value in DModX space
exceeding this critical value are listed as potential outliers

Fig. 9: Figure 7. Heatmap of correlation to PCA scores for suitable metadata fields.

10.2. Multivariate Analysis Report 71

nPYc Toolbox Documentation, Release 1.2.6

Fig. 10: Figure 9. PCA scores plots coloured by metadata (significance by correlation).

• dModX_criticalVal_type (None or str) – Type of critical value in DModX,
one of Fcrit or Percentile

• scores_criticalVal (None or float) – Samples with a value in scores space
exceeding this critical value are listed as potential outliers

• kw_threshold (None or float) – Fields with a Kruskal-Willis p-value greater
than this are not deemed to have a significant association with the PCA score

• r_threshold (None or float) – Fields with a (absolute) correlation coefficient
value less than this are not deemed to have a significant association with the PCA score

• hotellings_alpha (float) – Alpha value for plotting the Hotelling’s ellipse in
scores plots (default = 0.05)

• excludeFields (None or list) – If not None, list of sample metadata fields to
be additionally excluded from analysis

• destinationPath (None or str) – If None plot interactively, otherwise save
report to the path specified

10.3 Interactive Plots

Scores and loadings from a PCAmodel can also be explored interactively with the plotScoresInteractive()
and plotLoadingsInteractive() functions.

For example, a scores plot for components 1 and 2, with sample points coloured by Run Order can be generated using:

data = nPYc.plotting.plotScoresInteractive(dataset, PCAmodel, 'Run Order',
→˓components=[1, 2])
iplot(data)

Similarly a loadings plot for component 2 can be generated using:

data = nPYc.plotting.plotLoadingsInteractive(dataset, PCAmodel, component=2)
iplot(data)

Again, see the Plot Gallery for examples.

72 Chapter 10. Multivariate Analysis

CHAPTER 11

Normalisation

Dilution effects on global sample intensity can be normalised by attaching one of the classes in the normalisation
sub-module to the Normalisation attribute of a Dataset.

By default new Dataset objects have a NullNormaliser attached, which carries out no normalisation. By
assigning an instance of a Normaliser class all calls to intensityData to return values transformed by the
normaliser. For example, to return total area normalised values:

totalAreaNormaliser = nPYc.utilities.normalisation.TotalAreaNormaliser()
dataset.Normalisation = totalAreaNormaliser

There are three built-in normalisation objects:

• Null normaliser (NullNormaliser): no normalisation performed

• Probabilistic quotient normaliser (ProbabilisticQuotientNormaliser): performs probabilistic quo-
tient normalisation (Dieterle et al.1)

• Total area normaliser (TotalAreaNormaliser): performs normalisation where each row (sample) is di-
vided by the total sum of its variables (columns)

11.1 Normalisation Syntax and Parameters

The main function parameters (which may be of interest to advanced users) are as follows:

The utilitiesmodule implements several Normaliser objects, that perform intensity normalisation on the provided
numpy matrix.

All normaliser objects must implement the Normaliser abstract base class.

Normalisers may be configured as required upon initialisation, then a normalised view of a matrix obtained by passing
the data to be normalised to the normalise() method.

1 Frank Dieterle, Alfred Ross, Götz Schlotterbeck and Hans Senn. Probabilistic quotient normalization as robust method to account for dilution
of complex biological mixtures. application in 1H NMR metabonomics. Analytical Chemistry, 78(13):4281 – 90, 2006. URL: https://pubs.acs.org/
doi/10.1021/ac051632c

73

https://pubs.acs.org/doi/10.1021/ac051632c
https://pubs.acs.org/doi/10.1021/ac051632c

nPYc Toolbox Documentation, Release 1.2.6

Once normalise() has been called, the normalisation coefficients last used can be obtained from
normalisation_coefficients.

class nPYc.utilities.normalisation.NullNormaliser
Null normalisation object which performs no normalisation, returning the provided matrix unchanged when
normalise() is called.

normalisation_coefficients
Returns normalisation coefficients. :return: 1

normalise(X)
Returns X unchanged.

Parameters X (numpy.ndarray, shape [n_samples, n_features]) – Data in-
tensity matrix

Returns The original X matrix without any modification

Return type numpy.ndarray, shape [n_samples, n_features]

class nPYc.utilities.normalisation.ProbabilisticQuotientNormaliser(reference=None,
refer-
enceDescrip-
tion=None)

Normalisation object which performs Probabilistic Quotient normalisation (Dieterle et al Analytical Chemistry,
78(13):4281 – 90, 2006)

Parameters

• reference (str, int, or numpy.ndarray) – Source of the reference profile.
If None, use the median of X, if an int treat as the index of a spectrum in X to use as the
reference, if an array with same width as X, treat as the reference profile.

• referenceDescription (None, or str) – A textual description of the refer-
ence provided

• keepMagnitude (bool) – If True scales X such that the mean area of X remains
constant for the dataset as a whole.

normalisation_coefficients
Returns the last set of normalisation coefficients calculated.

Returns Normalisation coefficients or None if they have not been generated yet

Raises AttributeError – Setting the normalisation coefficients directly is not allowed
and raises an error

reference
Allows the reference profile used to calculated fold-changes to be queried or set.

Returns The reference profile used to calculate normalisation coefficients

normalise(X)
Apply Probabilistic Quotient normalisation to a dataset.

Parameters

• X (numpy.ndarray, shape [n_samples, n_features]) – Data inten-
sity matrix

• reference (numpy.ndarray, shape [n_features]) – Spectrum to use
as the normalisation reference

Returns A read-only, normalised view of X

74 Chapter 11. Normalisation

nPYc Toolbox Documentation, Release 1.2.6

Return type numpy.ndarray, shape [n_samples, n_features]

Raises ValueError – if X is not a numpy 2-d array representing a data matrix

class nPYc.utilities.normalisation.TotalAreaNormaliser(keepMagnitude=True)
Normalisation object which performs Total Area normalisation. Each row in the matrix provided will be scaled
to sum to the same value.

Parameters keepMagnitude (bool) – If True scales X such that the mean area of X remains
constant for the dataset as a whole.

normalisation_coefficients
Returns the last set of normalisation coefficients calculated.

Returns Normalisation coefficients or None if they have not been generated yet

Raises AttributeError – Setting the normalisation coefficients directly is not allowed
and raises an error

normalise(X)
Apply Total Area normalisation to the dataset.

Parameters X (numpy.ndarray, shape [n_samples, n_features]) – Data in-
tensity matrix

Returns A read-only, normalised view of X

Return type numpy.ndarray, shape [n_samples, n_features]

Raises ValueError – If X is not a numpy 2-d array representing a data matrix

11.1. Normalisation Syntax and Parameters 75

nPYc Toolbox Documentation, Release 1.2.6

76 Chapter 11. Normalisation

CHAPTER 12

Exporting Data

Datasets can be exported in a variety of formats with the exportDataset() method.

The default export (saveFormat=CSV) results in production of three separate CSV files:

saveDir = '/path to save outputs'
dataset.exportDataset(destinationPath=saveDir)

• sampleMetadata: with a row for every sample and a column for every separate sample-related metadata
field

• featureMetadata: with a row for every feature and a column for each separate feature-related metadata
field

• intensityData: intensity value per variable (column) and sample (row)

An alternative option (saveFormat=UnifiedCSV) results in export of a single file, which contains the
sampleMetadata, featureMetadata, and intensityData concatenated together, with samples in rows,
and features in columns:

dataset.exportDataset(saveFormat='UnifiedCSV', destinationPath=saveDir)

The nPYc-Toolbox also supports exporting metadata in ISATAB format.

Reports can also be saved to file, see Quality Assessment Reports for details.

77

nPYc Toolbox Documentation, Release 1.2.6

78 Chapter 12. Exporting Data

CHAPTER 13

Configuration Files

13.1 Built-in Configuration SOPs

The following tables list, define and give default values for all of the SOP parameters for each method.

13.1.1 All Dataset Objects

Table 1: Required SOP parameters for all Dataset objects
Key Type Default

value
Role

‘noFiles’ int 10 When showing a ranked list of files show only the top/bottom
noFiles

‘dpi’ int 300 Raster resolution when plotting figures
‘figureSize’ list of

float
[11,7] Size to plot figures

‘figureFor-
mat’

str ‘png’ Format to save figures in

‘histBins’ int 100 Number of bins to use when drawing histograms
‘quantiles’ list of

float
[25, 75] When calculating percentiles, use this default range

79

nPYc Toolbox Documentation, Release 1.2.6

Table 2: Optional SOP parameters for all Dataset objects
Key Type De-

fault
value

Role

‘analyti-
calMea-
sure-
ments’

dict {} Set of key, value pairs where each key is a column in sampleMetadata and the
value is ‘categorical’ or ‘continuous’ depending on parameter type. Columns de-
scribed here will be checked for association in the multivariate quality control reports
when run with the analytical setting.

‘ex-
clude-
FromPlot-
ting’

list
of
str

[] Column names in sampleMetadata to exclude from plotting

‘sam-
pleMeta-
dataN-
otEx-
ported’

list
of
str

[“Ex-
clu-
sion
De-
tails”]

Column names in sampleMetadata to exclude from data export

‘fea-
tureMeta-
dataN-
otEx-
ported’

list
of
str

[] Column names in featureMetadata to exclude from data export

13.1.2 MSDataset Objects

Table 3: SOP parameters for all MSDataset objects
Parameter Type Default

value
Role

‘corrThreshold’ float 0.7 When filtering features by correlation to dilution using the Serial Di-
lution Sample, the correlation must be above this

‘corrMethod’ str ‘pearson’ Type of correlation to linearity to calculate, must be ‘pearson’ or
‘spearman’

‘rsdThreshold’ float 30 When filtering features by RSD, the RSD must be below this
‘varianceRatio’ float 1.1 When filtering features RSD in Study Samples must be at least RSD

in Precision Reference * this value
‘blankThreshold’ float 1.1 When filtering features RSD in Study Samples must be at least RSD

in Procedural Blank samples * this value
‘artifactualFilter’ str

(bool)
‘False’ Flag for whether artifactual filtering should be applied when filtering

features
‘deltaMzArtifac-
tual’

float 0.1 ‘artifactualFilter’ parameter: Maximum allowed m/z distance be-
tween two grouped features

‘overlapThresh-
oldArtifactual’

int 50 ‘artifactualFilter’ parameter: Minimum peak overlap between two
grouped features

‘corrThresh-
oldArtifactual’

float 0.9 ‘artifactualFilter’ parameter: Minimum correlation between two
grouped features

‘filenameSpec’ str
(regex)

see ‘Gener-
icMS.json’

Regular expression to pull out information from raw MS data file-
names (as per NPC standard naming conventions)

80 Chapter 13. Configuration Files

nPYc Toolbox Documentation, Release 1.2.6

13.1.3 NMRDataset Objects

Table 4: SOP parameters for all NMRDataset objects
Parameter Type Default value

(for GenericNM-
RUrine)

Default value (for
GenericNMR-
Blood)

Role

‘bounds’ list of float [-1, 10] [-1, 10] Region of the original spectrum to re-
interpolate and retain

‘variable-
Size’

int 20000 20000 Number of points in the re-
interpolated spectrum

‘alignTo’ str ‘singlet’ ‘doublet’ Type of signal to calibrate to
‘calibrateTo’ float 0 5.233 Chemical shift value to calibrate to
‘ppm-
SearchRange’

list of float [-0.3, 0.3] [4.9, 5.733] Chemical shift region to search for
calibration signal

‘LWpeak-
Multiplicity’

str ‘singlet’ ‘quartet’ Type of signal used to measure line
width

‘LW-
peakRange’

list of float [-0.1, 0.1] [4.08, 4.14] Chemical shift region to search for
line width signal

‘LW-
FailThresh-
old’

float 1.3 1.3 Line-width check cut-off in Hz

‘base-
lineCheck-
Region’

list of list
pairs of
floats

[[-2, -0.5], [9.5,
12.5]]

[[-2, -0.5], [9.5,
12.5]]

Chemical shift regions to use in base-
line quality checks

‘solvent-
PeakCheck-
Region’

list of list
pairs of
floats

[[4.6, 4.7],[4.9,5]] [[4.4, 4.5], [4.85,5]] Chemical shift regions to use in water
suppression quality checks

‘exclusion-
Regions’

list of list
pairs of
floats

[[-
0.2,0.2],[4.7,4.9]]

[[-
0.2,0.2],[4.5,4.85]]

Chemical shift regions to mark for
exclusion by default during pre-
processing

13.2 Generation of Targeted SOPs

To create a new pre-defined TargetLynx SOP (fileType == 'TargetLynx') the JSON SOP must contain the
following fields, the list must cover all compounds in the same order:

• methodName The name of the method.

• chromatography The chromatography employed.

• ionisation The polarity employed.

• compoundID A list of numeric ID (“1”,”2”,. . .) that matches the TargetLynx compound ID.

• compoundName A list of compound names.

• IS A list of “True” “False” to indicate if the compound is an Internal Standard.

• unitFinal A list of the compound measurement unit after application of the unitCorrectionFactor (can be
left blank “”).

• unitCorrectionFactor A list of values by which to multiply the measured concentration in order to
reach the unitFinal (“1”,”0.1”,”1000”).

13.2. Generation of Targeted SOPs 81

nPYc Toolbox Documentation, Release 1.2.6

• calibrationMethod A list of the calibration method employed for the compound, from enum Calibra-
tionMethod: "noIS" for compounds without Internal Standard (and Internal Standards themselves)
= (use area), "backcalculatedIS" for compounds using an Internal Standard = (use response),
"noCalibration" for compounds not quantified (Monitored for relative information).

• calibrationEquation

A list of equations to obtain the concentration given 𝑎𝑟𝑒𝑎, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐹𝑎𝑐𝑡𝑜𝑟, 𝑎 and 𝑏. response-
Factor = (IS conc/IS Area)=response/Area (for noIS, responseFactor will be 1) is automatically
estimated from calibration samples.

The calibration equation is only employed if values <LLOQ are replaced by the noise level (Targeted-
Dataset._targetLynxApplyLimitsOfQuantificationNoiseFilled())

Calibration curve in TargetLynx is defined/established as: response = a * concentration + b (eq. 1)

– response is defined as: response = Area * (IS conc / IS Area)
(eq. 2) [for ‘noIS’ response = Area]

– using eq. 2, we can approximate the ratio IS Conc/IS Area in a representative sample
as: responseFactor = response / area (eq. 3)

– Therefore: concentration = ((area*responseFactor) - b) / a
(eq. 4)

– If in TargetLynx ‘axis transformation’ is set to log (but still use ‘Polynomial
Type’=linear and ‘Fit Weighting’=None)

– eq.1 is changed to: log(response) = a * log(concentration) + b
(eq. 5)

– and eq. 4 changed to: concentration = 10^(
(log(area*responseFactor) - b) / a) (eq. 5)

– Examples: "((area * responseFactor)-b)/a", "10**((numpy.
log10(area * responseFactor)-b)/a)", "area/a" | if b not needed,
set to 0 in csv [use for linear noIS, area=response, responseFactor=1, and response =
a * concentration]

• quantificationType A list of the type of quantification employed, from enum QuantificationType:
"IS", "QuantOwnLabeledAnalogue", "QuantAltLabeledAnalogue", "QuantOther"
or "Monitored"

Note: quantificationType "IS" must match with IS "True". quantificationType "Monitored" must
match with calibrationMethod "noCalibration".

• externalID A list of external ID, each external ID must also be present as its own field as a list of identi-
fier (for that external ID). For example, if "externalID":["PubChem ID"], the field "PubChem
ID":["ID1","ID2","","ID75"]" is required.

• sampleMetadataNotExported A list of sampleMetadata columns to exclude from export and re-
ports.

• featureMetadataNotExported A list of featureMetadata columns to exclude from export and
reports.

82 Chapter 13. Configuration Files

nPYc Toolbox Documentation, Release 1.2.6

Listing 1: Example TargetLynx SOP for the Amino Acids assay (Gray
N. et al. Human Plasma and Serum via Precolumn Derivatization
with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate: Application
to Acetaminophen-Induced Liver Failure. Analytical Chemistry, 89,
2017, 24782487)

{
"methodName":"NPC LC-MS Targeted - Amino Acid",
"chromatography":"R",
"ionisation":"POS",
"compoundID": ["1","2","3","4","5","6","7","8","9","10","11","12","13","14",

→˓"15","16","17","18","19","20","21","22","23","24","25","26","27","28","29","30","31
→˓","32","33","34","35","36","37","38","39","40","41","42","43","44","45","46","47",
→˓"48","49","50","51","52","53","54","55","56","57","58","59","60","61","62","63","64
→˓","65","66","67","68","69","70","71","72","73"],

"compoundName": ["4-Hydroxyproline","Alanine","Alanine-13C3-15N","Arginine",
→˓"Arginine-13C6-15N4","Aspartic acid","Aspartic acid-13C4-15N","Asparagine",
→˓"Carnosine","Cystine","Ethanolamine","Glutamic acid","Glutamic acid-13C5-15N",
→˓"Glutamine","Glutamine-13C5","Glycine","Glycine-13C2-15N","Histidine","Histidine-
→˓13C6-15N3","Isoleucine","Isoleucine-13C6-15N","Leucine","Leucine-13C6-15N","Lysine",
→˓"Lysine-13C6-15N2","Methionine","Methionine-13C5-15N","Phenylalanine",
→˓"Phenylalanine-13C9-15N","Proline","Proline-13C5-15N","Serine","Serine-13C3-15N",
→˓"Threonine","Threonine-13C4-15N","Tryptophan","Tyrosine","Valine","Valine-13C5-15N",
→˓"beta-Amino-iso-Butyric acid","Citrulline","Cystathionine","3-Methylhistidine","1-
→˓Methylhistidine","Homoserine","Hydroxylysine","Ornithine","Aminoadipic acid","alpha-
→˓Amino-n-Butyric acid","Phosphoserine","Sarcosine","Taurine","beta-Alanine","gamma-
→˓Amino-n-Butyric acid","Methylamine","Creatine","4-Aminohippuric acid","5-
→˓Aminovaleric acid","Allantoin","Anserine","Cysteine","Epinephrine","Galactosamine",
→˓"Glutathione","Homocystine","N-methyl-L-phenylalanine","N-methyl-valine","Octopamine
→˓","Putrescine","Tryptamine","Tyramine","Tyrosine-13C9-15N","Glycylglycine"],

"IS": ["False","False","True","False","True","False","True","False","False",
→˓"False","False","False","True","False","True","False","True","False","True","False",
→˓"True","False","True","False","True","False","True","False","True","False","True",
→˓"False","True","False","True","False","False","False","True","False","False","False
→˓","False","False","False","False","False","False","False","False","False","False",
→˓"False","False","False","False","False","False","False","False","False","False",
→˓"False","False","False","False","False","False","False","False","False","True",
→˓"False"],

"unitFinal":["\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M",
→˓"\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M",
→˓"\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M",
→˓"\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M",
→˓"\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M",
→˓"\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M",
→˓"\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M","\u00B5M",
→˓"noUnit","noUnit","noUnit","noUnit","noUnit","noUnit","noUnit","noUnit","noUnit",
→˓"noUnit","noUnit","noUnit","noUnit","noUnit","noUnit","noUnit","noUnit","\u00B5M",
→˓"noUnit"],

"unitCorrectionFactor": ["1","1","1","1","1","1","1","1","1","1","1","1","1",
→˓"1",
→˓"1",
→˓"1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1"],

"calibrationMethod": ["backcalculatedIS","backcalculatedIS","noIS",
→˓"backcalculatedIS","noIS","backcalculatedIS","noIS","backcalculatedIS",
→˓"backcalculatedIS","backcalculatedIS","backcalculatedIS","backcalculatedIS","noIS",
→˓"backcalculatedIS","noIS","backcalculatedIS","noIS","backcalculatedIS","noIS",
→˓"backcalculatedIS","noIS","backcalculatedIS","noIS","backcalculatedIS","noIS",
→˓"backcalculatedIS","noIS","backcalculatedIS","noIS","backcalculatedIS","noIS",
→˓"backcalculatedIS","noIS","backcalculatedIS","noIS","backcalculatedIS",
→˓"backcalculatedIS","backcalculatedIS","noIS","backcalculatedIS","backcalculatedIS",
→˓"backcalculatedIS","backcalculatedIS","backcalculatedIS","backcalculatedIS",
→˓"backcalculatedIS","backcalculatedIS","backcalculatedIS","backcalculatedIS",
→˓"backcalculatedIS","backcalculatedIS","backcalculatedIS","backcalculatedIS",
→˓"backcalculatedIS","noCalibration","noCalibration","noCalibration","noCalibration",
→˓"noCalibration","noCalibration","noCalibration","noCalibration","noCalibration",
→˓"noCalibration","noCalibration","noCalibration","noCalibration","noCalibration",
→˓"noCalibration","noCalibration","noCalibration","noIS","noCalibration"],

(continues on next page)

13.2. Generation of Targeted SOPs 83

nPYc Toolbox Documentation, Release 1.2.6

(continued from previous page)

"calibrationEquation": ["((area * responseFactor)-b)/a","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","((area * responseFactor)-
→˓b)/a","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","","((area *
→˓responseFactor)-b)/a","","((area * responseFactor)-b)/a","","((area *
→˓responseFactor)-b)/a","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a
→˓","","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a","((area *
→˓responseFactor)-b)/a","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a
→˓","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a","((area *
→˓responseFactor)-b)/a","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a
→˓","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a","((area *
→˓responseFactor)-b)/a","((area * responseFactor)-b)/a","((area * responseFactor)-b)/a
→˓","","","","","","","","","","","","","","","","","","",""],

"quantificationType": ["QuantAltLabeledAnalogue","QuantOwnLabeledAnalogue","IS
→˓","QuantOwnLabeledAnalogue","IS","QuantOwnLabeledAnalogue","IS",
→˓"QuantAltLabeledAnalogue","QuantAltLabeledAnalogue","QuantAltLabeledAnalogue",
→˓"QuantAltLabeledAnalogue","QuantOwnLabeledAnalogue","IS","QuantOwnLabeledAnalogue",
→˓"IS","QuantOwnLabeledAnalogue","IS","QuantOwnLabeledAnalogue","IS",
→˓"QuantOwnLabeledAnalogue","IS","QuantOwnLabeledAnalogue","IS",
→˓"QuantOwnLabeledAnalogue","IS","QuantOwnLabeledAnalogue","IS",
→˓"QuantOwnLabeledAnalogue","IS","QuantOwnLabeledAnalogue","IS",
→˓"QuantOwnLabeledAnalogue","IS","QuantOwnLabeledAnalogue","IS",
→˓"QuantAltLabeledAnalogue","QuantAltLabeledAnalogue","QuantOwnLabeledAnalogue","IS",
→˓"QuantAltLabeledAnalogue","QuantAltLabeledAnalogue","QuantAltLabeledAnalogue",
→˓"QuantAltLabeledAnalogue","QuantAltLabeledAnalogue","QuantAltLabeledAnalogue",
→˓"QuantAltLabeledAnalogue","QuantAltLabeledAnalogue","QuantAltLabeledAnalogue",
→˓"QuantAltLabeledAnalogue","QuantAltLabeledAnalogue","QuantAltLabeledAnalogue",
→˓"QuantAltLabeledAnalogue","QuantAltLabeledAnalogue","QuantAltLabeledAnalogue",
→˓"Monitored","Monitored","Monitored","Monitored","Monitored","Monitored","Monitored",
→˓"Monitored","Monitored","Monitored","Monitored","Monitored","Monitored","Monitored",
→˓"Monitored","Monitored","Monitored","IS","Monitored"],

"externalID":[],
"sampleMetadataNotExported":["TargetLynx Sample ID", "MassLynx Row ID", "Acqu

→˓Date", "Acqu Time", "Instrument", "Sample Type"],
"featureMetadataNotExported":["calibrationEquation", "TargetLynx Feature ID",

→˓"unitCorrectionFactor", "CpdInfo", "Cpd Info", "Noise (area)", "a", "b", "r", "r2",
→˓"r^2", "# left", "Excluded"],

"analyticalMeasurements":{"Study" : "categorical", "Instrument" : "categorical
→˓", "Re-Run" : "categorical", "Suplemental Injections" : "categorical", "Matrix" :
→˓"categorical", "Well" : "categorical", "Plate" : "categorical", "Batch" :
→˓"categorical", "Dilution" : "continuous", "Measurement Date" : "date", "Measurement
→˓Time" : "date", "Acquired Time" : "date", "Run Order" : "continuous", "Correction
→˓Batch" : "categorical", "Assay data name": "categorical", "Assay data location":
→˓"categorical", "Sample position": "categorical", "Sample batch": "categorical",
→˓"Acquisition batch": "categorical", "Plot Sample Type": "categorical", "AssayRole":
→˓"categorical", "SampleType": "categorical", "Exclusion Details": "categorical",
→˓"Skipped": "categorical", "Assay protocol": "categorical"},

"excludeFromPlotting":["Sample File Name", "Sample Base Name", "Batch Termini
→˓", "Study Reference", "Long-Term Reference", "Method Reference", "Dilution Series",
→˓"Skipped", "Study Sample", "File Path", "Exclusion Details", "Assay protocol",
→˓"Status", "Measurement Date", "Measurement Time", "Data Present", "LIMS Present",
→˓"LIMS Marked Missing", "Assay data name", "Assay data location", "AssayRole",
→˓"SampleType", "Sampling ID", "Plot Sample Type", "SubjectInfoData", "Detector Unit",
→˓ "TargetLynx Sample ID", "MassLynx Row ID"]

(continues on next page)

84 Chapter 13. Configuration Files

nPYc Toolbox Documentation, Release 1.2.6

(continued from previous page)

}

Behaviour of many aspects of the toolbox can be modified in a repeatable manner to create new workflows by creating
configuration files.

Default parameters for Dataset objects can be configured as they are initialised by supplying a SOP file containing
the desired parameters.

SOP parameters include aesthetic factors such as figure sizes and formats as well as quality control and analytical
parameters.

By default SOPS are read from the nPYc/StudyDesigns/SOP/ directory, but this can be overridden by the
directory specified in sopPath=, that will be searched before the built in SOP directory.

SOP files are simple JSON format files, whose contents are used to populate the Attributes dictionary. See the
default files in nPYc/StudyDesigns/SOP/ for examples.

The nPYc-Toolbox comes with a built-in set of configuration SOP files for each dataset type, for full details see Built-in
Configuration SOPs.

New pre-definined TargetLynx SOP files can also be created, for full details see Generation of Targeted SOPs.

13.2. Generation of Targeted SOPs 85

http://www.json.org

nPYc Toolbox Documentation, Release 1.2.6

86 Chapter 13. Configuration Files

CHAPTER 14

Enumerations

This section describes the main enumerations function parameters (which may be of interest to advanced users).

The enumerations module provides a set of enumerations (complete listings of all possible items in a collection)
for common types referenced in profiling experiments.

class nPYc.enumerations.VariableType
Enumeration of data sampling modalities.

• Discreetly sampled data types are those where the adjacency of variables is unimportant

• In spectral, continuum, and synonymous data, the ordering of variables is important in the interpretation
of the data

Discrete = 1

Continuum = 2

Spectral = 2

Profile = 2

class nPYc.enumerations.Ionisation
Enumeration of ionisation methods in Mass Spectrometry.

EI = 'Electron Impact'

ESI = 'Electrospray Ionisation'

DESI = 'Desorption Electrospray Ionisation'

MALDI = 'Matrix Assisted Laser Desorption Ionisation'

class nPYc.enumerations.SampleType
Enumeration of distinct sample types.

• Study Sample comprise the study in question

• Study Pool consists of a mixture of all study samples

87

nPYc Toolbox Documentation, Release 1.2.6

• External Reference a sample of a comparable matrix to the Study Samples, but not a sample (or mixture)
derived from samples acquired as part of the study. Acquired, for example, for assessing analytical quality
between studies.

• Method Reference consists of a synthetic mixture of known chemical standards

• Procedural Blank a blank sample not expected to contain any signals from the sample matrix

StudySample = 'Study Sample'

StudyPool = 'Study Pool'

ExternalReference = 'External Reference'

MethodReference = 'Method Reference'

ProceduralBlank = 'Procedural Blank'

class nPYc.enumerations.DatasetLevel
An enumeration.

Unknown = 0

Empty = 1

ValuesOnly = 2

QCReady = 3

class nPYc.enumerations.AssayRole
Enumeration of assay roles.

• Assay form the core of an analysis

• Precision Reference repeatedly acquired, and used to calculate measures of analytical precision

• Linearity Reference used to assess the linearity of response in the dataset, often by repeated injection
at varying concentrations or levels of dilution. If generated by dilution from a base-level, the per-
centage concentration of each Linearity Reference sample is indicated in the ‘Dilution’ field of the
sampleMetadata table

Assay = 'Assay'

PrecisionReference = 'Precision Reference'

LinearityReference = 'Linearity Reference'

Blank = 'Blank'

class nPYc.enumerations.Polarity
Enumeration of ionisation polarity.

Positive = 1

Negative = 2

class nPYc.enumerations.QuantificationType
Enumeration of quantification types.

• IS for Internal Standards

• QuantOwnLabeledAnalogue for compounds quantified and validated with own labeled analogue

• QuantAltLabeledAnalogue for compounds quantified and validated with alternative labeled analogue

• QuantOther for compounds quantified using another method

• Monitored for compounds monitored for relative information

88 Chapter 14. Enumerations

nPYc Toolbox Documentation, Release 1.2.6

• BrukerivDrQuant for compounds quantified with Bruker ivDr methods

• BrukerivDrEstimate for compounds estimated with Bruker ivDr methods

IS = 'Internal Standard'

QuantOwnLabeledAnalogue = 'Quantified and validated with own labeled analogue'

QuantAltLabeledAnalogue = 'Quantified and validated with alternative labeled analogue'

QuantOther = 'Other quantification'

Monitored = 'Monitored for relative information'

BrukerivDrQuant = 'Quantified using Bruker Biospin ivDr methods'

BrukerivDrEstimate = 'Estimated from other parameters using Bruker Biospin ivDr methods'

class nPYc.enumerations.CalibrationMethod
Enumeration of distinct calibration methods.

• noCalibration for compounds not quantified (monitored for relative information)

• noIS for compounds without Internal Standard (and Internal Standards themselves)

• backcalculatedIS for compounds using an Internal Standard

• otherCalibration for compounds employing another calibration approach

• nmrCalibration for compounds quantified by NMR

noCalibration = 'No calibration'

noIS = 'No Internal Standard'

backcalculatedIS = 'Backcalculated with Internal Standard'

otherCalibration = 'Other calibration method'

nmrCalibration = 'NMR quantitation'

class nPYc.enumerations.AnalyticalPlatform
Enumeration of analytical platform types.

• NMR for Nuclear Magnetic Resonance Spectroscopy

• MS for Mass Spectrometry

• Other placeholder for any other type of instrumentation

NMR = 'NuclearMagneticResonanceSpectroscopy'

MS = 'MassSpectrometry'

Other = 'Other'

89

nPYc Toolbox Documentation, Release 1.2.6

90 Chapter 14. Enumerations

CHAPTER 15

Utility Functions

This section describes the main utility function parameters (which may be of interest to advanced users).

The utilities module provides convenience functions for working with profiling datasets.

nPYc.utilities.rsd(data)
Calculate percentage relative standard deviation for each column in data.

rsd(x) = 𝜎x

𝜇x
× 100

Where RSDs cannot be calculated, (i.e. means of zero), numpy.finfo(numpy.float64).max is re-
turned.

Parameters data (numpy.ndarray) – n by m numpy array of data, with features in columns,
and samples in rows

Returns m vector of RSDs

Return type numpy.ndarray

nPYc.utilities.buildFileList(filepath, pattern)
Search for data files, by attempting to match to the file path regex pattern. :param filepath: Look for data
in all the directories under this location :type searchDirectory: str :param pattern: Recognise experimental
data by matching path to this compiled regex :type pattern: re.SRE_Pattern :return: A list of all paths below
searchDirectory that matched pattern :rtype: list[str,]

nPYc.utilities.sequentialPrecision(data)
Calculate percentage sequential precision for each column in data. Sequential precision for feature 𝑥 is defined
as:

sp(x) =

√︁
(1
𝑛−1

∑︀𝑛−1
𝑖=1 (𝑥𝑖+1−𝑥𝑖)2)/2

𝜇𝑥
× 100

Parameters data (numpy.ndarray) – n by m numpy array of measures, with features in
columns, and samples in rows

Returns m vector of sequential precision measures

Return type numpy.ndarray

91

nPYc Toolbox Documentation, Release 1.2.6

nPYc.utilities.rsdsBySampleType(dataset, onlyPrecisionReferences=True, useCol-
umn=’SampleType’)

Return percent RSDs calculated for the distinct class values in useColumn, defaults to the SampleType enums
in ‘SampleType’.

Parameters

• dataset (Dataset) – Dataset object to generate RSDs for.

• onlyPrecisionReferences (bool) – If True only use samples with the ‘Assay-
Role’ PrecisionReference

Returns Dict of RSDs for each group

Return type dict(str:numpy array)

92 Chapter 15. Utility Functions

CHAPTER 16

Plotting Functions

Throughout the toolbox, care has been taken to present results and project analyses into outputs of a form directly
interpretable by the analyst, such as projecting the loadings of a multivariate model onto the spectrum in the case of
NMR, and as an ion-map for LC-MS.

See the Plot Gallery for a visual overview of the available plots.

The plotting module contains function to generate several common visualisations.

Plots are built upon seaborn for aesthetics, or when interactivity is required, plotly.

Most plots support a set of common configuration parameters to allow customisation of various display options.
Common parameters that may be specified as keyword arguments are:

plottingFunctions(*vars, **kwargs):

Parameters

• savePath (str) – If None plot interactively, otherwise save the figure to the path
specified

• figureFormat (str) – If saving the plot, use this format

• dpi (int) – Plot resolution

• figureSize (tuple(float, float)) – Dimensions of the figure

Interactive plots utilise the plotly framework to provide controls, when using plotly you should ensure that the envi-
ronment is configured according to the instructions at Offline Plots in Plotly in Python

nPYc.plotting.histogram(values, inclusionVector=None, quantiles=None, histBins=100,
color=None, logy=False, logx=False, **kwargs)

Plot a histogram of values, optionally segmented according to observed quantiles.

Quantiles can be calculated on a second inclusionVector when specified.

Parameters

• values (numpy.array or dict) – Values to plot

93

http://seaborn.pydata.org
https://plot.ly
https://plot.ly/python/offline/

nPYc Toolbox Documentation, Release 1.2.6

• inclusionVector (None or numpy.array) – Optional second vector with
same size as values, used to select quantiles for plotting.

• quantiles (None or List) – List of quantile bounds to segment the histogram by

• title (str) – Title for the plot

• xlabel (str) – Label for the X-axis

• histBins (int) – Number of bins to break the histgram into

• color (None or List) – List of specific colours to use for plotting

• logy (bool) – If True plot y on a log scale

• logx (bool) – If True plot x on a log scale

• xlim (tuple of int) – Specify upper and lower bounds of the X axis

nPYc.plotting.plotBatchAndROCorrection(msData, msDatacorrected, featureList, addVio-
lin=True, sampleAnnotation=None, logy=False,
title=”, savePath=None, figureFormat=’png’,
dpi=72, figureSize=(11, 7))

Visualise the run-order correction applied to features, by plotting the values before and after correction, along
with the fit calculated.

Parameters

• msData (MSDataset) – Dataset prior to correction

• msDatacorrected (MSDataset) – Dataset post-correction

• featureList (list[int,]) – List of ints specifying indices of features to plot

• addViolin (bool) – If true, plot distributions as violin plots in addition to the lon-
gitudinal trend

• sampleAnnotation (dict) – Samples for annotation in plot, must include fields
‘rank’: index (int) and ‘id’: sample name (str, as in msData.sampleMetadata[‘Sample
File Name’]). For example, item[‘AbundanceSamples’] in featureID.py.

• logy (bool) – If True plot intensities on a log10 scale

• title (str) – Text to title each plot with

• savePath (None or str) – If None plot interactively, otherwise save the figures to
the path specified

nPYc.plotting.plotTIC(msData, addViolin=True, addBatchShading=False, addLineAtGaps=False,
colourByDetectorVoltage=False, logy=False, title=”, withExclusions=True,
savePath=None, figureFormat=’png’, dpi=72, figureSize=(11, 7))

Visualise TIC for all or a subset of features coloured by either dilution value or detector voltage. With the option
to shade by batch.

Note: addViolin and colourByDetectorVoltage are mutually exclusive.

Parameters

• msData (MSDataset) – Dataset object

• addViolin (bool) – If True adds violin plots of TIC distribution pre and post cor-
rection split by sample type

• addBatchShading (bool) – If True shades plot according to sample batch

94 Chapter 16. Plotting Functions

nPYc Toolbox Documentation, Release 1.2.6

• addLineAtGaps (bool) – If True adds line where acquisition time is greater than
double the norm

• colourByDetectorVoltage (bool) – If True colours points by detector voltage,
else colours by dilution

• logy (bool) – If True plot y on a log scale

• title (str) – Title for the plot

• withExclusions (bool) – If False, discard masked features from the sum

• savePath (None or str) – If None plot interactively, otherwise save the figure to
the path specified

• figureFormat (str) – If saving the plot, use this format

• dpi (int) – Plot resolution

• figureSize (tuple(float, float)) – Dimensions of the figure

nPYc.plotting.plotTICinteractive(msData, plottype=’Sample Type’, labelby=’Run Order’, with-
Exclusions=True)

Interactively visualise TIC (coloured by batch and sample type) with plotly, provides tooltips to allow identifi-
cation of samples.

Plots may be of two types: * ‘Sample Type’ to plot by sample type and coloured by batch * ‘Linearity Refer-
ence’ to plot LR samples coloured by dilution

Parameters

• msData (MSDataset) – Dataset object

• plottype (str) – Select plot type, may be either Sample Type or Linearity
Reference

Returns Data object to use with plotly

nPYc.plotting.plotLRTIC(msData, sampleMask=None, colourByDetectorVoltage=False, title=”, la-
bel=False, savePath=None, figureFormat=’png’, dpi=72, figureSize=(11,
7))

Visualise TIC for linearity reference (LR) samples (either all or a subset) coloured by either dilution value or
detector voltage.

Parameters

• msData (MSDataset) – Dataset object

• sampleMask (None or array of bool) – Defines subset of samples to plot, if
None use msData’s built-in sampleMask

• colourByDetectorVoltage (bool) – If True colours points by detector voltage,
else colours by dilution

• title (str) – Title for the plot

• label (bool) – If True, labels points with run order values

• savePath (None or str) – If None, plot interactively, otherwise attempt to save at
this path.

• format (str) – Format to save figure

• dpi (int) – Resolution to draw at

• figureSize (tuple(float, float)) – Specify size of figure

95

nPYc Toolbox Documentation, Release 1.2.6

nPYc.plotting.jointplotRSDvCorrelation(rsd, correlation, histBins=100, savePath=None, fig-
ureFormat=’png’, dpi=72, figureSize=(11, 7))

Plot a 2D histogram of feature RSDs vs correlations to dilution, with marginal histograms.

Parameters

• rsd (numpy.array) – Vector of feature relative standard deviations

• correlation (numpy.array) – Vector of correlation to dilution

• histBins (int) – Number of bins to break the histgram into

• savePath (None or str) – If None, plot interactively, otherwise attempt to save at
this path

• figureFormat (str) – If saving the plot, use this format

• dpi (int) – Plot resolution

• figureSize (tuple(float, float)) – Dimensions of the figure

nPYc.plotting.plotCorrelationToLRbyFeature(msData, featureMask=None, title=”,
maxNo=5, savePath=None, figureFor-
mat=’png’, dpi=72, figureSize=(11, 7))

Summary plots of correlation to dilution for a subset of features, separated by sample batch. Each figure in-
cludes a scatter plot of feature intensity vs dilution, TIC of LR and surrounding SP samples, and a heatmap of
correlation to dilution for each LR batch subset, overall, and mean.

Parameters

• msData (MSDataset) – Dataset object

• featureMask (None or array of bool) – Limits plotting to a subset of fea-
tures, if None use msData’s built-in sampleMask

• title (str) – Title for the plot

• maxNo (int) – Optional number of features to plot (default=10, i.e., 10 randomly se-
lected features in featureList will be plotted)

• savePath (None or str) – If None, plot interactively, otherwise attempt to save at
this path.

• figureFormat (str) – Format to save figure

• dpi (int) – Resolution to draw at

• figureSize (tuple(float, float)) – Specify size of figure

nPYc.plotting.plotIonMap(msData, useRetention=True, title=None, savePath=None, xlim=None,
ylim=None, logx=False, logy=False, figureFormat=’png’, dpi=72, figure-
Size=(11, 7))

plotIonMap(msData, **kwargs):

Visualise features in a MSDataset, to visualise the features in terms of the raw data.

Plotting requires the presence of ‘m/z’ and ‘Retention Time’ columns in the featureMetadata table. If
both ‘m/z’ and retention time are present, a 2D ion map is generated, otherwise a 1D mass-spectrum is plotted.

Parameters

• msData (MSDataset) – Dataset object to visualise

• useRetention (bool) – If False ignore any Retention Time information and plot a
1D mass spectrum

96 Chapter 16. Plotting Functions

nPYc Toolbox Documentation, Release 1.2.6

nPYc.plotting.plotRSDs(dataset, ratio=False, savePath=None, color=None **kwargs)
Visualise analytical versus biological variance.

Plot RSDs calculated in study-reference samples (analytical variance), versus those calculated in study samples
(biological variance). RSDs can be visualised either in absolute terms, or as a ratio to analytical variation
(ratio=True).

plotRSDs() requires that the dataset have at least two samples with the PrecisionReference assay
role, if present, RSDs calculated on independent sets of PrecisionReference samples will also be plotted.

Parameters

• dataset (Dataset) – Dataset object to plot, the object must have greater that one
‘Study Sample’ and ‘Study-Reference Sample’ defined

• ratio (bool) – If True plot the ratio of analytical variance to biological variance
instead of raw values

• featureName (str) – featureMetadata column name by which to label features

• logx (bool) – If True plot RSDs on a log10 scaled axis

• xlim (None or tuple(float, float)) – Tuple of (min, max) RSD values to
plot

• hLines (None or list) – None or list of y positions at which to plot an horizontal
line. Features are positioned from 1 to nFeat

• savePath (None or str) – If None plot interactively, otherwise save the figure to
the path specified

• color (None or seaborn.palettes._ColorPalette) – Allows the default
colour pallet to be overridden

• featName (bool) – If True y-axis label is the feature Name, if False features are
numbered.

nPYc.plotting.plotRSDsInteractive(dataset, featureName=’Feature Name’, ratio=False,
logx=True)

Plotly-based interactive version of plotRSDs()

Visualise analytical versus biological variance.

Plot RSDs calculated in study-reference samples (analytical variance), versus those calculated in study samples
(biological variance). RSDs can be visualised either in absolute terms, or as a ratio to analytical variation
(ratio=True).

plotRSDsInteractive() requires that the dataset have at least two samples with the
PrecisionReference assay role, if present, RSDs calculated on independent sets of
PrecisionReference samples will also be plotted.

Parameters

• dataset (Dataset) – Dataset object to plot, the object must have greater that one
‘Study Sample’ and ‘Study-Reference Sample’ defined

• featureName (str) – featureMetadata column name by which to label features

• ratio (bool) – If True plot the ratio of analytical variance to biological variance
instead of raw values

• logx (bool) – If True plot RSDs on a log10 scaled axis

97

nPYc Toolbox Documentation, Release 1.2.6

nPYc.plotting.plotScree(R2, Q2=None, title=”, xlabel=”, ylabel=”, savePath=None, figureFor-
mat=’png’, dpi=72, figureSize=(11, 7))

Plot a barchart of variance explained (R2) and predicted (Q2) (if available) for each PCA component.

Parameters

• R2 (numpy.array) – PCA R2 values

• Q2 (numpy.array) – PCA Q2 values

• title (str) – Title for the plot

• xlabel (str) – Label for the x-axis

• ylabel (str) – Label for the y-axis

nPYc.plotting.plotOutliers(values, runOrder, sampleType=None, addViolin=False, Fcrit=None,
FcritAlpha=None, PcritPercentile=None, title=”, xlabel=’Run Or-
der’, ylabel=”, savePath=None, figureFormat=’png’, dpi=72, figure-
Size=(11, 7))

Plot scatter plot of PCA outlier stats sumT (strong) or DmodX (moderate), with a line at [25, 50, 75, 95, 99]
quantiles and at a critical value if specified

Parameters

• values (numpy.array) – dModX or sum of scores, measure of ‘fit’ for each sample

• runOrder (numpy.array) – Order of sample acquisition (samples are plotted in this
order)

• sampleType (pandas.Series) – Sample type of each sample, must be from ‘Study
Sample’, ‘Study Reference’, ‘Long-Term Reference’, or ‘Sample’ (see multivariateRe-
port.py)

• addViolin (bool) – If True adds a violin plot of distribution of values

• Fcrit (float) – If not none, plots a line at Fcrit

• FcritAlpha (float) – Alpha value for Fcrit (for legend)

• PcritPercentile (float) – If not none, plots a line at this quantile

• title (str) – Title for the plot

• xlabel (str) – Label for the x-axis

nPYc.plotting.plotSpectralVariance(dataset, classes=None, quantiles=(25, 75), aver-
age=’median’, xlim=None, **kwargs)

Plot the average spectral profile of dataset, optionally with the bounds of variance calculated from quantiles
shaded. By specifying a column from dataset.sampleMetadata in the classes argument, individual averages and
ranges will be plotted for each unique label in dataset.sampleMetadata[classes].

Parameters

• dataset (Dataset) – Data to plot

• classes (None or column in dataset.sampleMetadata) – Plot by dis-
tinct classes specified

• quantiles (None or (min, max)) – Plot these quantile bounds

• average (str) – Method to calculate average spectrum, defaults to ‘median’, may also
be ‘mean’

• xlim (None or (float, float)) – Tuple of (min, max) values to scale the x-axis
to

98 Chapter 16. Plotting Functions

nPYc Toolbox Documentation, Release 1.2.6

• logy (bool) – If True plot intensities on a log10 scale

• title (str) – Text to title each plot with

nPYc.plotting.plotScores(pcaModel, classes=None, classType=None, components=None, al-
pha=0.05, plotAssociation=None, title=”, xlabel=”, figures=None,
savePath=None, figureFormat=’png’, dpi=72, figureSize=(11, 7))

Plot PCA scores for each pair of components in PCAmodel, coloured by values defined in classes, and with
Hotelling’s T2 ellipse (95%)

Parameters

• pcaModel (ChemometricsPCA) – PCA model object (scikit-learn based)

• classes (pandas.Series) – Measurement/groupings associated with each sample,
e.g., BMI/treatment status

• classType (str) – Type of data in classes, either ‘Plot Sample Type’, ‘categorical’
or ‘continuous’, must be specified if classes is not None. If classType is ‘Plot Sample
Type’, classes expects ‘Study Sample’, ‘Study Reference’, ‘Long-Term Reference’,
‘Serial Dilution’ or ‘Sample’.

• components (tuple (int, int)) – If None plots all components in model, else
plots those specified in components

• alpha (float) – Significance value for plotting Hotellings ellipse

• plotAssociation (bool) – If True, plots the association between each set of PCA
scores and the metadata values

• significance (numpy.array) – Significance of association of scores from each
component with values in classes from correlation or Kruskal-Wallis test for example
(see multivariateReport.py)

• title (str) – Title for the plot

• xlabel (str) – Label for the x-axis

• figures (dict) – If not None, saves location of each figure for output in html report
(see multivariateReport.py)

nPYc.plotting.plotScoresInteractive(dataTrue, pcaModel, colourBy, components=[1, 2], al-
pha=0.05, withExclusions=False)

Interactively visualise PCA scores (coloured by a given sampleMetadata field, and for a given pair of compo-
nents) with plotly, provides tooltips to allow identification of samples.

Parameters

• dataTrue (Dataset) – Dataset

• object pcaModel (PCA) – PCA model object (scikit-learn based)

• colourBy (str) – sampleMetadata field name to of which values to colour samples
by

• components (list) – List of two integers, components to plot

• alpha (float) – Significance value for plotting Hotellings ellipse

• withExclusions (bool) – If True, only report on features and samples not masked
by the sample and feature masks; must match between data and pcaModel

99

nPYc Toolbox Documentation, Release 1.2.6

nPYc.plotting.plotLoadings(pcaModel, msData, title=”, figures=None, savePath=None, figureFor-
mat=’png’, dpi=72, figureSize=(11, 7))

Plot PCA loadings for each component in PCAmodel. For NMR data plots the median spectrum coloured by
the loading. For MS data plots an ion map (rt vs. mz) coloured by the loading.

Parameters

• pcaModel (ChemometricsPCA) – PCA model object (scikit-learn based)

• msData (Dataset) – Dataset object

• title (str) – Title for the plot

• figures (dict) – If not None, saves location of each figure for output in html report
(see multivariateReport.py)

nPYc.plotting.plotLoadingsInteractive(dataTrue, pcaModel, component=1, withExclu-
sions=False)

Interactively visualise PCA loadings (for a given pair of components) with plotly, provides tooltips to allow
identification of features.

For MS data, plots RT vs. mz; for NMR plots ppm vs spectral intensity. Plots are coloured by the weight of the
loadings.

Parameters

• dataTrue (Dataset) – Dataset

• pcaModel (ChemometricsPCA) – PCA model object (scikit-learn based)

• component (int) – Component(s) to plot (one component (int) or list of two integers)

• withExclusions (bool) – If True, only report on features and samples not masked
by the sample and feature masks; must match between data and pcaModel

nPYc.plotting.plotDiscreteLoadings(pcaModel, nbComponentPerRow=3, firstComponent=1,
sort=True, **kwargs)

Plot loadings for a linear model as a set of parallel vertical scatter plots.

Parameters

• pcaModel (ChemometricsPCA) – Model to plot

• nbComponentPerRow (int) – Number of side-by-side loading plots to place per row

• firstComponent (int) – Start plotting components from this component

• sort (bool) – Plot variable in order of their magnitude in component one

nPYc.plotting.plotFeatureRanges(dataset, compounds, logx=False, histBins=20, **kwargs)
Plot distributions plots of the values listed in compounds, on to a set of axes with a linked x-axis.

If reference ranges are specified in featureMetadata, a reference range will be drawn behind each plot. If
reference ranges are available, distributions that for within the range will be shaded green, and those that fall
outside red, where no reference range is available the distribution will be shaded blue.

Parameters

• dataset (Dataset) – Dataset object to plot values from

• compounds (list) – List of features to plot

• logx (bool) – Calculate and plot histograms on a log10 scale, if the minumn values is
below 1, the histogram is calculated by adding one to all values

• histBins (int) – Number of bins for histograms

100 Chapter 16. Plotting Functions

nPYc Toolbox Documentation, Release 1.2.6

nPYc.plotting.plotMetadataDistribution(sampleMetadata, valueType, figures=None,
savePath=None, figureFormat=’png’, dpi=72,
figureSize=(11, 7))

Plot the distribution of a set of data, e.g., sampleMetadata fields. Plots a bar chart for categorical data, or a
histogram for continuous data.

Parameters

• sampleMetadata (dataset.sampleMetadata) – Set of measure-
ments/groupings associated with each sample, note can contain multiple columns,
but they must be of one valueType

• valueType (str) – Type of data contained in sampleMetadata, one of
continuous, categorical or date

• figures (dict) – If not None, saves location of each figure for output in html report
(see multivariateReport.py)

nPYc.plotting.plotLOQRunOrder(targetedData, addCalibration=True, compareBatch=True, ti-
tle=”, savePath=None, figureFormat=’png’, dpi=72, figure-
Size=(11, 7))

Visualise ratio of LLOQ and ULOQ by run order, separated by batch. Option to add barchart that summarises
across batch

Parameters

• targetedData (TargetedDataset) – TargetedDataset object

• addCalibration (bool) – If True add calibration samples

• compareBatch (bool) – If True add barchart across batch, separated by SampleType

• title (str) – Title for the plot

• savePath (None or str) – If None plot interactively, otherwise save the figure to
the path specified

• figureFormat (str) – If saving the plot, use this format

• dpi (int) – Plot resolution

• figureSize (tuple(float, float)) – Dimensions of the figure

Raises

• ValueError – if targetedData does not satisfy to the TargetedDataset definition for QC

• ValueError – if calibration does not match the number of batch

nPYc.plotting.plotFeatureLOQ(tData, splitByBatch=True, plotBatchLOQ=False, zoom-
LOQ=False, logY=False, tightYLim=True, nbPlotPerRow=3,
metabolitesPerPlot=5, withExclusions=True, savePath=None,
figureFormat=’png’, dpi=72, figureSize=(11, 7))

Violin plot for each feature with line at LOQ concentrations. Option to split by batch, add each batch LOQs,
split by SampleType.

Parameters

• tData (TargetedDataset) – TargetedDataset

• splitByBatch (bool) – If True separate each violin plot by batch

• plotBatchLOQ (bool) – If True add lines at LOQs (LLOQ/ULOQ) for each batch,
and points for samples that will be out of LOQ

101

nPYc Toolbox Documentation, Release 1.2.6

• zoomLOQ (bool) – If True plots a zoomed ULOQ plot on top, all data in the centre
and a zoomed LLOQ plot at the bottom

• logY (bool) – If True log-scale the y-axis

• tightYLim (bool) – if True ylim are close to the points but can let LOQ lines outside,
if False LOQ lines will be part of the plot.

• nbPlotPerRow (int) – Number of plots to place on each row

• metabolitesPerPlot (int) – Maximum numper of metabolites to plot in on single
figure

• savePath (None or str) – If None plot interactively, otherwise save the figure to
the path specified

• figureFormat (str) – If saving the plot, use this format

• dpi (int) – Plot resolution

• figureSize (tuple(float, float)) – Dimensions of the figure

Raises ValueError – if targetedData does not satisfy to the TargetedDataset definition for QC

nPYc.plotting.plotVariableScatter(inputTable, logX=False, xLim=None, xLabel=”, yLabel=”,
sampletypeColor=False, hLines=None, hLineStyle=’-’,
hBox=None, vLines=None, vLineStyle=’:’, vBox=None,
savePath=None, figureFormat=’png’, dpi=72, figure-
Size=(11, 7))

Plot values on x-axis, with ordering on the y-axis. Entries as rows are placed on the x-axis, values of all columns
are plotted on y-axis with different colors. If sampletypeColor=True, only columns named as SampleTypes will
be plotted and colored according to other reports, otherwise all columns are plotted. Ordering of the rows is
conserved, the first item is placed at the top of the y-axis and the last row is at the bottom. If a column [‘yName’]
is present, it is employed to label each y-axis entry.

Parameters

• inputTable (dataframe) – DataFrame or accuracy or precision values, with fea-
tures as rows and sample types as columns ([‘Study Sample’, ‘Study Pool’, ‘External
Reference’, ‘All Samples’, ‘nan’]). A ‘yName’ column can be present to display the
feature name.

• logX (bool) – If True plot values on a log10 scaled x axis

• xLim (None or tuple(float, float)) – Tuple of (min, max) values to plot

• xLabel (str) – X-axis label

• yLabel (str) – Y-axis label

• sampletypeColor (bool) – If True only the sampleType columns are plotted with
colors matching other reports

• hLines (None or list) – None or list of y positions at which to plot an horizontal
line. Features are positioned from 1 to nFeat

• hLineStyle (str) – One of the axhline linestyle (‘-’, ‘–’, ‘-.’, ‘:’)

• hBox (None or list) – None or list of tuple of y positions defining horizontal box.
Features are positioned from 1 to nFeat

• vLines (None or list) – None or list of v positions at which to plot an vertical
line. Unit is the same as the v axis.

• vLineStyle (str) – One of the axvline linestyle (‘-’, ‘–’, ‘-.’, ‘:’)

102 Chapter 16. Plotting Functions

nPYc Toolbox Documentation, Release 1.2.6

• vBox (None or list) – None or list of tuple of x positions defining horizontal box.
Features are positioned from 1 to nFeat

• color (None or seaborn.palettes._ColorPalette) – Allows the default
colour pallet to be overridden

• savePath (None or str) – If None plot interactively, otherwise save the figure to
the path specified

nPYc.plotting.plotAccuracyPrecision(tData, accuracy=True, percentRange=None,
savePath=None, figureFormat=’png’, dpi=72, fig-
ureSize=(11, 7))

Plot Accuracy or Precision for a TargetedDataset.

Features at all present concentrations are shown on the y-axis, with accuracy or precision values on the x-axis.
Accuracy are centered around 100%. If Precision values cover too wide a range, x-axis is log transformed.

Parameters

• tData (TargetedDataset) – TargetedDataset object to plot

• accuracy (bool) – If True plot the Accuracy of each measurements, if False plot
the Precision of measurements.

• percentRange (None or float) – If float [0, inf], add a rectangle covering the
range of acceptable percentage; for Accuracy 100 +/- percentage, for Precision 0 - per-
centage.

• savePath (None or str) – If None plot interactively, otherwise save the figure to
the path specified

• figureFormat (str) – If saving the plot, use this format

• dpi (int) – Plot resolution

• figureSize (tuple(float, float)) – Dimensions of the figure

Raises

• ValueError – if targetedData does not satisfy to the TargetedDataset definition for QC

• ValueError – if percentRange is not ‘None’ or float

nPYc.plotting.plotCalibrationInteractive(nmrData)
Build Plotly figure of calibration

Parameters nmrData (NMRDataset) – Dataset to visualise

Returns Plotly figure object for displaly with iplot()

Return type plotly.graph_objs.Figure

nPYc.plotting.plotLineWidth(nmrData, **kwargs)
Visualise spectral line widths, plotting the median spectrum, the 95% variance, and any spectra where line width
can not be calulated or exceeds the cutoff specified in nmrData.Attributes['LWpeakRange'].

Parameters

• nmrData (NMRDataset) – Dataset object

• savePath (None or str) – If None, plot interactively, otherwise attempt to save at
this path

nPYc.plotting.plotLineWidthInteractive(nmrData)
Interactive Plotly version of py:func:plotLineWidth

103

nPYc Toolbox Documentation, Release 1.2.6

Visualise spectral line widths, plotting the median spectrum, the 95% variance, and any spectra where line width
can not be calulated or exceeds the cutoff specified in nmrData.Attributes['LWpeakRange'].

Parameters

• nmrData (NMRDataset) – Dataset object

• savePath (None or str) – If None, plot interactively, otherwise attempt to save at
this path

nPYc.plotting.plotBaseline(nmrData, savePath=None, **kwargs)
Plot spectral baseline at the high and low end of the spectrum. Visualise the median, bounds of 95% variance,
and outliers.

Parameters

• nmrData (NMRDataset) – Dataset object

• savePath (None or str) – If None, plot interactively, otherwise attempt to save at
this path

nPYc.plotting.plotBaselineInteractive(nmrData)
Interactive Plotly version of py:func:plotBaseline.

Plot spectral baseline at the high and low end of the spectrum. Visualise the median, bounds of 95% variance,
and outliers.

Parameters nmrData (NMRDataset) – Dataset object

nPYc.plotting.plotSolventResonance(nmrData, **kwargs)
Plot the solvent region to be cut from the spectrum along with spectra failing solvent region checks.

Parameters

• nmrData (NMRDataset) – Dataset to plot

• savePath (None or str) – If None draw interactively, otherwise save to this path

nPYc.plotting.plotSolventResonanceInteractive(nmrData, title=’Residual solvent reso-
nance’)

Ploty interactive version of plotSolventResonance()

Plot the solvent region to be cut from the spectrum along with spectra failing solvent region checks.

Parameters nmrData (NMRDataset) – Dataset to plot

Returns Plotly figure object to plot with iPlot

nPYc.plotting.plotSpectraInteractive(dataset, samples=None, xlim=None, feature-
Names=None, sampleLabels=’Sample ID’, nmr-
Dataset=True)

Plot spectra from dataset.

#:param Dataset dataset: Dataset to plot from :param samples: Index of samples to plot, if None plot all spectra
:type samples: None or list of int :param xlim: Tuple of (minimum value, maximum value) defining a feature
range to plot :type xlim: (float, float)

nPYc.plotting.plotIonMapInteractive(dataset, title=None, xlim=None, ylim=None, logx=False,
logy=False, featureName=’Feature Name’)

Visualise features in a MSDataset, as an ion map.

Plotting requires the presence of ‘m/z’ and ‘Retention Time’ columns in the featureMetadata table.

Parameters msData (MSDataset) – Dataset object to visualise

104 Chapter 16. Plotting Functions

nPYc Toolbox Documentation, Release 1.2.6

nPYc.plotting.plotSpectralVarianceInteractive(dataset, classes=None, quantiles=(25,
75), average=’mean’, xlim=None, ti-
tle=None)

Plot the average spectral profile of dataset, optionally with the bounds of variance calculated from quantiles
shaded. By specifying a column from dataset.sampleMetadata in the classes argument, individual averages and
ranges will be plotted for each unique label in dataset.sampleMetadata[classes].

Parameters

• dataset (Dataset) – Data to plot

• classes (None or column in dataset.sampleMetadata) – Plot by dis-
tinct classes specified

• quantiles (None or (min, max)) – Plot these quantile bounds

• average (str) – Method to calculate average spectrum, defaults to ‘median’, may also
be ‘mean’

• xlim (None or (float, float)) – Tuple of (min, max) values to scale the x-axis
to

nPYc.plotting.correlationSpectroscopyInteractive(dataset, target, mode=’SHY’, corre-
lationMethod=’Pearson’)

Conduct correlation spectroscopy analyses against the samples in dataset.

Mode may be one of: - SHY Correlate features in dataset to values in target

Parameters

• dataset (Dataset) – Correlations weill be projected into this dataset

• target (numpy.array) – Correlations are calculated to this

• mode (str) – Type of analysis to conduct

• correlationMethod (str) – Type of correlation to calculate, may be ‘Pearson’, or
‘Spearman’

Returns Plotly figure

Return type

nPYc.plotting.plotTargetedFeatureDistribution(datasetOriginal, featureName=’Feature
Name’, featureMask=None, sample-
Types=[’SS’, ’SP’, ’ER’], logx=False,
figures=None, savePath=None, figure-
Format=’png’, dpi=72, figureSize=(11,
7))

Plot the distribution (violin plots) of a set of features, e.g., peakPantheR outputs, coloured by sample type

Parameters

• dataset (MSDataset) – MSDataset

• logx (bool) – If True log-scale the x-axis

• figures (dict) – If not None, saves location of each figure for output in html report
(see _generateMSReport.py)

105

nPYc Toolbox Documentation, Release 1.2.6

106 Chapter 16. Plotting Functions

CHAPTER 17

Plot Gallery

Examples of the outputs from Plotting Functions implemented in the toolbox.

Fig. 1: histogram() - Draw a histogram, optionally segmented by a second parameter.

Fig. 2: plotBatchAndROCorrection() - Visualise the run-order and batch correction applied to a dataset.

Fig. 3: plotTIC() - Visualise TIC for all or a subset of features in an MSDataset, coloured by class, dilution
value, or detector voltage.

107

nPYc Toolbox Documentation, Release 1.2.6

Fig. 4: plotTICinteractive() - Interactively visualise TIC vs. run-order for features in an MSDataset,
coloured by sample type.

108 Chapter 17. Plot Gallery

nPYc Toolbox Documentation, Release 1.2.6

Fig. 5: plotTICinteractive() - Interactively visualise TIC vs. run-order of linearity reference samples from
an MSDataset, coloured by dilution value.

Fig. 6: plotLRTIC() - Visualise TIC vs. run-order of linearity reference samples from an MSDataset, coloured
by dilution value.

Fig. 7: jointplotRSDvCorrelation() - Visualise 2D histogram of feature RSDs vs. correlations to dilution,
with marginal histograms from Spectral datasets.

Fig. 8: plotIonMap() - Visualise the features present in an MSDataset object in terms of the original analytics.
Also has a plotly-based interactive version plotIonMapInteractive().

Fig. 9: plotRSDs() - Visualise the analytical and biological variance in Discretely sampled datasets.

Fig. 10: plotScree() - Plot a barchart of variance explained (R2) and predicted (Q2) (if available) for each PCA
component derived from a PCA model generated on Dataset datasets.

Fig. 11: plotScores() - Plot PCA scores for each pair of components in PCAmodel, coloured by values defined
in classes, and with Hotelling’s T2 ellipse (95%), derived from a PCA model generated on Dataset datasets.

Fig. 12: plotOutliers() - Plot scatter plot of PCA outlier stats sumT (strong) or DmodX (moderate), with a line
at [25, 50, 75, 95, 99] quantiles, derived from a PCA model generated on Dataset datasets.

109

nPYc Toolbox Documentation, Release 1.2.6

Fig. 13: plotLoadings() - Plot PCA loadings for each component in PCAmodel. For NMRDataset datasets
plots the median spectrum coloured by the loading. For MSDataset datasets plots an ion map (rt vs. mz) coloured
by the loading.

Fig. 14: plotSpectralVariance() - Plot of median profile with variance across all samples visualised in
Spectral datasets. Also has a plotly-based interactive version plotSpectralVarianceInteractive().

Fig. 15: plotScoresInteractive() - Interactively visualise PCA scores (coloured by a given sampleMetadata
field, and for a given pair of components) with plotly, provides tooltips to allow identification of samples, derived from
a PCA model generated on Dataset datasets.

110 Chapter 17. Plot Gallery

nPYc Toolbox Documentation, Release 1.2.6

Fig. 16: plotLoadingsInteractive() - Interactively visualise PCA loadings (for a given pair of components)
with plotly, provides tooltips to allow identification of features., derived from a PCA model generated on Dataset
datasets.

Fig. 17: plotDiscreteLoadings() - Visualise loadings of a ChemometricsPCA model.

111

nPYc Toolbox Documentation, Release 1.2.6

112 Chapter 17. Plot Gallery

CHAPTER 18

Glossary

Aliquot Aliquots are one or more sub-fractions of a sample that may be considered functionally equivalent. Setting
aside handling considerations, aliquots may be combined or split with no impact on sample composition or the
expected result of an assay.

Analytical Batch Set of study and reference samples acquired in a single continuous analytical run, without planned
interruption i.e. instrument maintenance.

Assay Analytical procedure, encompassing sample preparation, data-acquisition, and feature extraction, for the char-
acterisation of the chemical composition of samples. The datasets generated by an assay may provide measures
as relative or absolute quantifications, for either absolute chemical names, or annotated and unknown features.

Assay Role The rational for acquisition of a specific sample (see AssayRole).

Batch Effects Analytical and preparative influences that may cause a systematic difference in measurements taken at
different points in time.

Continuum Data

Spectral Data Analytical data in which the adjacency of variables is significant. Examples include NMR spectra, or
mass-spectra recorded in continuum mode.

Correction Batch In the ideal case, analytical batch and run-order effects are detected and corrected based on the
analytical batches into which the study has been divided. However in the event of unplanned interruptions to an
analysis, it may be necessary to further sub-divide the run into a series of correction batches.

Correlation to Dilution The Correlation to Dilution provides a measurement of analytical accuracy, expressed as a
value between -1 and 1, where the closer the value to 1 the more accurately the feature is measured with respect
to its expected concentration. The Correlation to Dilution for feature 𝑥, is the Pearson correlation coefficient
between the feature’s measured concentration, and the expected concentration of the sample, calculated from
the Serial Dilution Sample set.

Discrete Data Analytical data in which the adjacency of variables is unimportant to their interpretation. Peak-picked
UPLC-MS, targeted, and clinical measures are typically of this type.

Feature Measured entity from a specific assay, that proxies the abundance of a chemical in the assayed sample. Each
chemical in a sample may give rise to none, one, or several features in the dataset generated from a specific
assay.

113

nPYc Toolbox Documentation, Release 1.2.6

Long-Term Reference

LTR A specific sample type/assay role combination consisting of samples with External Reference and Precision Ref-
erence assignment. These represent a type of QC sample useful, for example, for between-study comparisons.

Mass Accuracy The precision by which the m/z of an ion can be measured in mass spectrometry. Typically expressed
in ppm and calculated by: ∆𝑚𝑖 = (mi−ma)

ma
× 106 where mi is the observed mass and ma is the true mass.

Mass Spectrometry

MS Analytical technology that assays a sample in terms of the observed mass-to-charge ratio of the constituent
compounds.

Mass-to-Charge Ratio

m/z Mass Spectrometry term describing the measurement of an ions mass relative to its charge.

Matrix The source of a specimen, for example, urine, blood-plasma, or serum.

Notation conventions (code) Matrices are set 𝑈𝑃𝑃𝐸𝑅𝐶𝐴𝑆𝐸, vectors 𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒, and scalar values italic.

Nuclear Magnetic Resonance Spectroscopy

NMR Analytical technology for assaying samples by detection the resonance of atomic nuclei in a magnetic field.

Participant

Subject

Sample Source The source of a study sample (generated at a sampling event), which could represent an individual,
experimental site or condition, or other.

ppm (MS) Parts-per-Million, used as a measure of mass accuracy in mass spectrometry.

ppm (NMR) Parts-per-Million, a measurement of the chemical shift of a nucleus (𝜈) in NMR, expressed as a ratio to
the spectrometer frequency (𝜈ref) by: 𝛿 = 𝜈−𝜈ref

𝜈ref
.

Preparative Batch A group of one or more sample batches handled and prepared together, using a single batch of
reagents.

Reference Sample Reference samples are measured to characterise the stability of assays during the course of an
acquisition, and account for platform dependent analytical variability. There are several common forms of
reference sample, including Study Reference, Long-Term Reference.

Relative Standard Deviation

RSD The RSD provides a measurement of analytical precision, expressed as a percentage. The RSD is calculated for
feature 𝑥, from repeated measurements (typically of the study reference samples), by: rsd(x) = 𝜎x

𝜇x
× 100.

Repeat Assay Replicate analytical data acquired from a sample that augments any data previously acquired. For
example an interruption in the acquisition of an MS batch may cause an additional dilution series to be acquired
when analysis resumes.

Rerun Assay Replicate analytical data acquired from a sample that obsoletes any data previously acquired. For
example, study samples reacquired following analytical issues are reruns.

Resolution The ability of an instrument to separate two signals.

In NMR resolution is directly related to the magnetic field strength, and typically expressed in terms of the
resonant frequency of the hydrogen nuclei in H2O at room temperature.

In MS resolution is measured and calculated by 𝑟 = mi

w1/2
, where mi is the nominal mass of an ion, and w1/2 is

the measured peak-width at half-height.

Retention Time Measurement of the time of elution of a feature as observed in a specific UPLC-MS chromatographic
method. Internally, all nPYc toolbox retention times are expressed in seconds unless otherwise noted.

114 Chapter 18. Glossary

nPYc Toolbox Documentation, Release 1.2.6

Run Order The sequence in which samples are assayed.

Run-Order Effects Analytical factors that may affect the measurement of features in a dataset by introducing pro-
gressive assay-to-assay biases in measurement. Examples include the gradual decline in observed intensity of
measurement in ToF MS detectors.

Sample A single specimen to be assayed. May be divided into two broad classes, study samples which form the core
of an analysis, and reference samples, that allow that characterisation of analytical performance.

Sample Assay Analytical data acquired by a single assay, from a single physical specimen.

Sample Base Name Common name for all comparable assays of the same sample. For example, reacquisitions of the
same sample will share an identical Base Name.

Sample Batch A collection of study samples (typically 80, to allow formatting onto a 96-well plate with room for
reference samples) plus some number of reference samples, prepared and analysed together.

Sample File Name Unique name of an assay data file. Two sample assays acquired from the sample physical sample
(for example, a rerun), will have unique Sample File Names.

Sample Type The overarching compositional class of a specific sample (see SampleType).

Sampling Event The specific point in time at which a sample was generated. One sampling event may produce
several equivalent aliquots. Note that obtaining samples of blood-plasma and urine from a participant at the
same time is considered two sampling events, as the biofluids obtained are not interchangeable.

Serial Dilution Sample

SRDS A specific sample type/assay role combination consisting of samples with Study Pool and Linearity Reference
assignment. Serial Dilution Samples consist of a number of pooled QC samples diluted to known concentrations
and acquired to asses the linearity of response of features during analysis.

Study A collection of samples for analysis, constituting a single project.

Study Reference

SR A specific sample type/assay role combination consisting of samples with Study Sample and Precision Reference
assignment. These represent the classic QC sample used in profiling studies to assess analytical stability.

Study Sample

SS Samples comprising the study.

Ultra-Performance Liquid Chromatography Mass-Spectrometry

UPLC-MS Analytical technology for assaying samples, coupling chromatographic separation with mass detection.

Units

Where unspecified units used in the nPYc toolbox are as follows:

115

nPYc Toolbox Documentation, Release 1.2.6

Variable Unit Datatype Interpretation
Sample inclusion bool True == included, False == ex-

cluded
Feature inclusion bool True == included, False == ex-

cluded
Run order int Ascending rank order
Times & Dates datetime Export / import as RFC 3339
Fluid volumes Milliliters (ml) float
Ionisation Mode Polarity
Ionisation Type Ionisation
Retention Time Seconds (s) float
Atomic Mass Unified atomic mass units

(u)
float

NMR Chemical
Shift

PPM float

Collision Energy Volts (v) float

• genindex

• modindex

• search

116 Chapter 18. Glossary

https://tools.ietf.org/html/rfc3339.html

Python Module Index

n
nPYc, ??
nPYc.batchAndROCorrection, 64
nPYc.enumerations, 87
nPYc.multivariate.exploratoryAnalysisPCA,

68
nPYc.plotting, 93
nPYc.utilities, 91
nPYc.utilities.extractParams, 47
nPYc.utilities.normalisation, 73

117

nPYc Toolbox Documentation, Release 1.2.6

118 Python Module Index

Index

Symbols
_generateReportMS (class in nPYc.reports), 60
_generateReportNMR (class in nPYc.reports), 61
_generateReportTargeted (class in

nPYc.reports), 61
_generateSampleReport (class in nPYc.reports),

54

A
accuracyPrecision()

(nPYc.objects.TargetedDataset method),
43

addFeatureInfo() (nPYc.objects.Dataset method),
25

addSampleInfo() (nPYc.objects.Dataset method),
25

addSampleInfo() (nPYc.objects.MSDataset
method), 29

addSampleInfo() (nPYc.objects.NMRDataset
method), 33

addSampleInfo() (nPYc.objects.TargetedDataset
method), 42

Aliquot, 113
amendBatches() (nPYc.objects.MSDataset method),

30
Analytical Batch, 113
AnalyticalPlatform (class in nPYc.enumerations),

89
AnalyticalPlatform (nPYc.objects.Dataset at-

tribute), 21
applyMasks() (nPYc.objects.Dataset method), 25
applyMasks() (nPYc.objects.MSDataset method), 28
applyMasks() (nPYc.objects.TargetedDataset

method), 41
artifactualFilter() (nPYc.objects.MSDataset

method), 30
artifactualLinkageMatrix

(nPYc.objects.MSDataset attribute), 28
Assay, 113

Assay (nPYc.enumerations.AssayRole attribute), 88
Assay Role, 113
AssayRole (class in nPYc.enumerations), 88
Attributes (nPYc.objects.Dataset attribute), 21

B
backcalculatedIS (nPYc.enumerations.CalibrationMethod

attribute), 89
Batch Effects, 113
Blank (nPYc.enumerations.AssayRole attribute), 88
BrukerivDrEstimate

(nPYc.enumerations.QuantificationType at-
tribute), 89

BrukerivDrQuant (nPYc.enumerations.QuantificationType
attribute), 89

buildFileList() (in module nPYc.utilities), 91

C
CalibrationMethod (class in nPYc.enumerations),

89
Continuum (nPYc.enumerations.VariableType at-

tribute), 87
Continuum Data, 113
Correction Batch, 113
correctMSdataset() (in module

nPYc.batchAndROCorrection), 64
Correlation to Dilution, 113
correlationSpectroscopyInteractive() (in

module nPYc.plotting), 105
correlationToDilution

(nPYc.objects.MSDataset attribute), 28

D
Dataset (class in nPYc.objects), 20
DatasetLevel (class in nPYc.enumerations), 88
DESI (nPYc.enumerations.Ionisation attribute), 87
Discrete (nPYc.enumerations.VariableType attribute),

87
Discrete Data, 113

119

nPYc Toolbox Documentation, Release 1.2.6

E
EI (nPYc.enumerations.Ionisation attribute), 87
Empty (nPYc.enumerations.DatasetLevel attribute), 88
ESI (nPYc.enumerations.Ionisation attribute), 87
excludeFeatures() (nPYc.objects.Dataset

method), 26
excludeFeatures() (nPYc.objects.MSDataset

method), 30
excludeSamples() (nPYc.objects.Dataset method),

26
exploratoryAnalysisPCA() (in module

nPYc.multivariate.exploratoryAnalysisPCA),
68

exportDataset() (nPYc.objects.Dataset method),
26

exportDataset() (nPYc.objects.TargetedDataset
method), 38

ExternalReference
(nPYc.enumerations.SampleType attribute), 88

extractParams() (in module
nPYc.utilities.extractParams), 47

F
Feature, 113
featureMask (nPYc.objects.Dataset attribute), 21
featureMetadata (nPYc.objects.Dataset attribute),

20

G
getFeatures() (nPYc.objects.Dataset method), 27

H
histogram() (in module nPYc.plotting), 93

I
initialiseMasks() (nPYc.objects.Dataset

method), 24
initialiseMasks() (nPYc.objects.MSDataset

method), 30
intensityData (nPYc.objects.Dataset attribute), 22
Ionisation (class in nPYc.enumerations), 87
IS (nPYc.enumerations.QuantificationType attribute), 89

J
jointplotRSDvCorrelation() (in module

nPYc.plotting), 95

L
LinearityReference

(nPYc.enumerations.AssayRole attribute),
88

log (nPYc.objects.Dataset attribute), 22
Long-Term Reference, 114

LTR, 114

M
m/z, 114
MALDI (nPYc.enumerations.Ionisation attribute), 87
Mass Accuracy, 114
Mass Spectrometry, 114
Mass-to-Charge Ratio, 114
Matrix, 114
mergeLimitsOfQuantification()

(nPYc.objects.TargetedDataset method),
38

MethodReference (nPYc.enumerations.SampleType
attribute), 88

Monitored (nPYc.enumerations.QuantificationType at-
tribute), 89

MS, 114
MS (nPYc.enumerations.AnalyticalPlatform attribute), 89
MSDataset (class in nPYc.objects), 27
multivariateReport (class in nPYc.reports), 71

N
name (nPYc.objects.Dataset attribute), 22
Negative (nPYc.enumerations.Polarity attribute), 88
NMR, 114
NMR (nPYc.enumerations.AnalyticalPlatform attribute),

89
nmrCalibration (nPYc.enumerations.CalibrationMethod

attribute), 89
NMRDataset (class in nPYc.objects), 33
noCalibration (nPYc.enumerations.CalibrationMethod

attribute), 89
noFeatures (nPYc.objects.Dataset attribute), 22
noIS (nPYc.enumerations.CalibrationMethod attribute),

89
Normalisation (nPYc.objects.Dataset attribute), 22
normalisation_coefficients

(nPYc.utilities.normalisation.NullNormaliser
attribute), 74

normalisation_coefficients
(nPYc.utilities.normalisation.ProbabilisticQuotientNormaliser
attribute), 74

normalisation_coefficients
(nPYc.utilities.normalisation.TotalAreaNormaliser
attribute), 75

normalise() (nPYc.utilities.normalisation.NullNormaliser
method), 74

normalise() (nPYc.utilities.normalisation.ProbabilisticQuotientNormaliser
method), 74

normalise() (nPYc.utilities.normalisation.TotalAreaNormaliser
method), 75

noSamples (nPYc.objects.Dataset attribute), 22
Notation conventions (code), 114
nPYc (module), 1

120 Index

nPYc Toolbox Documentation, Release 1.2.6

nPYc.batchAndROCorrection (module), 64
nPYc.enumerations (module), 87
nPYc.multivariate.exploratoryAnalysisPCA

(module), 68
nPYc.plotting (module), 93
nPYc.utilities (module), 91
nPYc.utilities.extractParams (module), 47
nPYc.utilities.normalisation (module), 73
Nuclear Magnetic Resonance

Spectroscopy, 114
NullNormaliser (class in

nPYc.utilities.normalisation), 74

O
Other (nPYc.enumerations.AnalyticalPlatform at-

tribute), 89
otherCalibration (nPYc.enumerations.CalibrationMethod

attribute), 89

P
Participant, 114
plot() (nPYc.objects.NMRDataset method), 34
plotAccuracyPrecision() (in module

nPYc.plotting), 103
plotBaseline() (in module nPYc.plotting), 104
plotBaselineInteractive() (in module

nPYc.plotting), 104
plotBatchAndROCorrection() (in module

nPYc.plotting), 94
plotCalibrationInteractive() (in module

nPYc.plotting), 103
plotCorrelationToLRbyFeature() (in module

nPYc.plotting), 96
plotDiscreteLoadings() (in module

nPYc.plotting), 100
plotFeatureLOQ() (in module nPYc.plotting), 101
plotFeatureRanges() (in module nPYc.plotting),

100
plotIonMap() (in module nPYc.plotting), 96
plotIonMapInteractive() (in module

nPYc.plotting), 104
plotLineWidth() (in module nPYc.plotting), 103
plotLineWidthInteractive() (in module

nPYc.plotting), 103
plotLoadings() (in module nPYc.plotting), 99
plotLoadingsInteractive() (in module

nPYc.plotting), 100
plotLOQRunOrder() (in module nPYc.plotting), 101
plotLRTIC() (in module nPYc.plotting), 95
plotMetadataDistribution() (in module

nPYc.plotting), 100
plotOutliers() (in module nPYc.plotting), 98
plotRSDs() (in module nPYc.plotting), 96

plotRSDsInteractive() (in module
nPYc.plotting), 97

plotScores() (in module nPYc.plotting), 99
plotScoresInteractive() (in module

nPYc.plotting), 99
plotScree() (in module nPYc.plotting), 97
plotSolventResonance() (in module

nPYc.plotting), 104
plotSolventResonanceInteractive() (in

module nPYc.plotting), 104
plotSpectraInteractive() (in module

nPYc.plotting), 104
plotSpectralVariance() (in module

nPYc.plotting), 98
plotSpectralVarianceInteractive() (in

module nPYc.plotting), 104
plotTargetedFeatureDistribution() (in

module nPYc.plotting), 105
plotTIC() (in module nPYc.plotting), 94
plotTICinteractive() (in module nPYc.plotting),

95
plotVariableScatter() (in module

nPYc.plotting), 102
Polarity (class in nPYc.enumerations), 88
Positive (nPYc.enumerations.Polarity attribute), 88
ppm (MS), 114
ppm (NMR), 114
PrecisionReference

(nPYc.enumerations.AssayRole attribute),
88

Preparative Batch, 114
ProbabilisticQuotientNormaliser (class in

nPYc.utilities.normalisation), 74
ProceduralBlank (nPYc.enumerations.SampleType

attribute), 88
Profile (nPYc.enumerations.VariableType attribute),

87

Q
QCReady (nPYc.enumerations.DatasetLevel attribute),

88
QuantAltLabeledAnalogue

(nPYc.enumerations.QuantificationType at-
tribute), 89

QuantificationType (class in nPYc.enumerations),
88

QuantOther (nPYc.enumerations.QuantificationType
attribute), 89

QuantOwnLabeledAnalogue
(nPYc.enumerations.QuantificationType at-
tribute), 89

R
reference (nPYc.utilities.normalisation.ProbabilisticQuotientNormaliser

Index 121

nPYc Toolbox Documentation, Release 1.2.6

attribute), 74
Reference Sample, 114
Relative Standard Deviation, 114
Repeat Assay, 114
Rerun Assay, 114
Resolution, 114
Retention Time, 114
RFC

RFC 3339, 116
RSD, 114
rsd() (in module nPYc.utilities), 91
rsdsBySampleType() (in module nPYc.utilities), 91
rsdSP (nPYc.objects.MSDataset attribute), 28
rsdSP (nPYc.objects.TargetedDataset attribute), 38
rsdSS (nPYc.objects.MSDataset attribute), 28
rsdSS (nPYc.objects.TargetedDataset attribute), 38
Run Order, 115
Run-Order Effects, 115

S
Sample, 115
Sample Assay, 115
Sample Base Name, 115
Sample Batch, 115
Sample File Name, 115
Sample Source, 114
Sample Type, 115
sampleMask (nPYc.objects.Dataset attribute), 21
sampleMetadata (nPYc.objects.Dataset attribute), 20
SampleType (class in nPYc.enumerations), 87
Sampling Event, 115
saveFeatureMask() (nPYc.objects.MSDataset

method), 29
sequentialPrecision() (in module

nPYc.utilities), 91
Serial Dilution Sample, 115
Spectral (nPYc.enumerations.VariableType attribute),

87
Spectral Data, 113
SR, 115
SRDS, 115
SS, 115
Study, 115
Study Reference, 115
Study Sample, 115
StudyPool (nPYc.enumerations.SampleType attribute),

88
StudySample (nPYc.enumerations.SampleType at-

tribute), 88
Subject, 114

T
TargetedDataset (class in nPYc.objects), 34

TotalAreaNormaliser (class in
nPYc.utilities.normalisation), 75

U
Ultra-Performance Liquid

Chromatography
Mass-Spectrometry, 115

Unknown (nPYc.enumerations.DatasetLevel attribute),
88

updateMasks() (nPYc.objects.Dataset method), 24
updateMasks() (nPYc.objects.MSDataset method),

28
updateMasks() (nPYc.objects.NMRDataset method),

34
updateMasks() (nPYc.objects.TargetedDataset

method), 41
UPLC-MS, 115

V
validateObject() (nPYc.objects.Dataset method),

22
validateObject() (nPYc.objects.MSDataset

method), 30
validateObject() (nPYc.objects.TargetedDataset

method), 38
ValuesOnly (nPYc.enumerations.DatasetLevel at-

tribute), 88
VariableType (class in nPYc.enumerations), 87

122 Index

	Introduction
	Introduction to Metabolic Profiling
	Tutorials
	Recommended Study Design Elements
	Datasets
	Sample Metadata
	Sample and Feature Masks
	Reports
	Batch & Run-Order Correction
	Multivariate Analysis
	Normalisation
	Exporting Data
	Configuration Files
	Enumerations
	Utility Functions
	Plotting Functions

	Metabolic Profiling
	Installation and Tutorials
	Installing the nPYc-Toolbox
	Installing the nPYc-toolbox-tutorials
	Using the Jupyter Notebooks
	Tutorial Datasets
	Preprocessing and Quality Control of LC-MS Data with the nPYc-Toolbox
	Preprocessing and Quality Control of NMR Data with the nPYc-Toolbox
	Preprocessing and Quality Control of NMR Targeted Data with the nPYc-Toolbox

	Recommended Study Design Elements
	Sample and Study Design Nomenclature

	Datasets
	LC-MS Datasets
	NMR Datasets
	Targeted Datasets
	Dataset Specific Syntax and Parameters

	Sample Metadata
	CSV Template for Metadata Import
	Analytical Parameter Extraction

	Sample and Feature Masks
	Using updateMasks
	Using excludeSamples and excludeFeatures
	Using applyMasks and initialiseMasks

	Quality Assessment Reports
	Sample Summary Report
	Feature Summary Report: LC-MS Datasets
	Feature Summary Report: NMR Datasets
	Feature Summary Report: NMR Targeted Datasets
	Dataset Specific Reporting Syntax and Parameters

	Batch & Run-Order Correction
	Batch & Run-Order Correction Assessment
	Running Batch & Run-Order Correction

	Multivariate Analysis
	PCA Model
	Multivariate Analysis Report
	Interactive Plots

	Normalisation
	Normalisation Syntax and Parameters

	Exporting Data
	Configuration Files
	Built-in Configuration SOPs
	Generation of Targeted SOPs

	Enumerations
	Utility Functions
	Plotting Functions
	Plot Gallery
	Glossary
	Python Module Index
	Index

